早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2014•宜春模拟)如图,在四棱锥P-ABCD中,侧棱PA丄底面ABCD底面ABCD为矩形,E为PD上一点,AD=2AB=2AP=2,PE=2DE.(I)若F为PE的中点,求证BF∥平面ACE;(Ⅱ)求三棱锥P-ACE的体积.

题目详情
(2014•宜春模拟)如图,在四棱锥P-ABCD中,侧棱PA丄底面ABCD底面ABCD为矩形,E为PD上一点,AD=2AB=2AP=2,PE=2DE.
(I)若F为PE的中点,求证BF∥平面ACE;
(Ⅱ)求三棱锥P-ACE的体积.
▼优质解答
答案和解析
(I)若F为PE的中点,由于底面ABCD为矩形,E为PD上一点,AD=2AB=2AP=2,PE=2DE,故E、F都是线段PD的三等分点.
设AC与BD的交点为O,则OE是△BDF的中位线,故有BF∥OE,而OE在平面ACE内,BF不在平面ACE内,故BF∥平面ACE.
(II)由于侧棱PA丄底面ABCD,且ABCD为矩形,故有CD⊥PA,CD⊥AD,故CD⊥平面PAE,.
三棱锥P-ACE的体积VP-ACE=VC-PAE=
1
3
S△PAE•CD=
1
3
•(
2
3
•S△PAD)•AB=
1
3
2
3
1
2
•PA•PD)•AB=
1
9
•PA•PD•AB=
1
9
•1•2•1=
2
9