早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知:如图,D为线段AB上一点(不与点A、B重合),CD⊥AB,且CD=AB,AE⊥AB,BF⊥AB,且AE=BD,BF=AD.(1)如图1,当点D恰是AB的中点时,请你猜想并证明∠ACE与∠BCF的数量关系;(2)如图2,当

题目详情
已知:如图,D为线段AB上一点(不与点A、B重合),CD⊥AB,且CD=AB,AE⊥AB,BF⊥AB,且AE=BD,BF=AD.
(1)如图1,当点D恰是AB的中点时,请你猜想并证明∠ACE与∠BCF的数量关系;
(2)如图2,当点D不是AB的中点时,你在(1)中所得的结论是否发生变化,写出你的猜想并证明;
(3)若∠ACB=α,直接写出∠ECF的度数(用含α的式子表示).
▼优质解答
答案和解析
(1)猜想:∠ACE=∠BCF.
证明:∵D是AB中点,
∴AD=BD,
又∵AE=BD,BF=AD,
∴AE=BF.
∵CD⊥AB,AD=BD,
∴CA=CB.
∴∠1=∠2.
∵AE⊥AB,BF⊥AB,
∴∠3=∠4=90°.
∴∠1+∠3=∠2+∠4.
即∠CAE=∠CBF.
∴△CAE≌△CBF.
∴∠ACE=∠BCF.…

(2)∠ACE=∠BCF仍然成立.
证明:连接BE、AF.
∵CD⊥AB,AE⊥AB,
∴∠CDB=∠BAE=90°.
又∵BD=AE,CD=AB,
△CDB≌△BAE.…
∴CB=BE,∠BCD=∠EBA.
在Rt△CDB中,∵∠CDB=90°,
∴∠BCD+∠CBD=90°.
∴∠EBA+∠CBD=90°.
即∠CBE=90°.
∴△BCE是等腰直角三角形.
∴∠BCE=45°. …
同理可证:△ACF是等腰直角三角形.
∴∠ACF=45°. …
∴∠ACF=∠BCE.
∴∠ACF-∠ECF=∠BCE-∠ECF.
即∠ACE=∠BCF.…

(3)∠ECF的度数为90°-α.…