早教吧 育儿知识 作业答案 考试题库 百科 知识分享

在数学探究课上,老师出示了这样的探究问题,请你一起来探究:已知:C是线段AB所在平面内任意一点,分别以AC、BC为边,在AB同侧作等边三角形ACE和BCD,联结AD、BE交于点P.(1)如图1,当

题目详情
在数学探究课上,老师出示了这样的探究问题,请你一起来探究:
作业帮
已知:C是线段AB所在平面内任意一点,分别以AC、BC为边,在AB同侧作等边三角形ACE和BCD,联结AD、BE交于点P.
(1)如图1,当点C在线段AB上移动时,线段AD与BE的数量关系是:___.
(2)如图2,当点C在直线AB外,且∠ACB<120°,上面的结论是否还成立?若成立请证明,不成立说明理由.
(3)在(2)的条件下,∠APE的大小是否随着∠ACB的大小的变化而发生变化,若变化,写出变化规律,若不变,请求出∠APE的度数.
▼优质解答
答案和解析
(1)∵△ACE、△CBD均为等边三角形,
∴AC=EC,CD=CB,∠ACE=∠BCD,
∴∠ACD=∠ECB;
在△ACD与△ECB中,
AC=EC
∠ACD=∠ECB
CD=CB

∴△ACD≌△ECB(SAS),
∴AD=BE,
故答案为AD=BE.
(2)AD=BE成立.
证明:∵△ACE和△BCD是等边三角形
∴EC=AC,BC=DC,
∠ACE=∠BCD=60°,
∴∠ACE+∠ACB=∠BCD+∠ACB,即∠ECB=∠ACD;
在△ECB和△ACD中,
EC=AC
∠ECB=∠ACD
BC=DC

∴△ECB≌△ACD(SAS),
∴BE=AD.
(3))∠APE不随着∠ACB的大小发生变化,始终是60°.作业帮
如图2,设BE与AC交于Q,
由(2)可知△ECB≌△ACD,
∴∠BEC=∠DAC
又∵∠AQP=∠EQC,∠AQP+∠QAP+∠APQ=∠EQC+∠CEQ+∠ECQ=180°
∴∠APQ=∠ECQ=60°,即∠APE=60°.
看了 在数学探究课上,老师出示了这...的网友还看了以下: