早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2011?黑河)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:①b2﹣4ac>0②a>0③b>0④c>0⑤9a+3b+c<0,则其中结论正确的个数是()A.2个B.3个C

题目详情
(2011?黑河)已知二次函数y=ax 2 +bx+c(a≠0)的图象如图所示,现有下列结论:①b 2 ﹣4ac>0  ②a>0  ③b>0  ④c>0  ⑤9a+3b+c<0,则其中结论正确的个数是(  )
A.2个 B.3个
C.4个 D.5个
▼优质解答
答案和解析
B

分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=1时二次函数的值的情况进行推理,进而对所得结论进行判断.
①根据图示知,二次函数与x轴有两个交点,所以△=b 2 -4ac>0;故①正确;
②根据图示知,该函数图象的开口向上,
∴a>0;
故②正确;
③又对称轴x=- =1,
<0,
∴b<0;
故本选项错误;
④该函数图象交于y轴的负半轴,
∴c<0;
故本选项错误;
⑤根据抛物线的对称轴方程可知:(-1,0)关于对称轴的对称点是(3,0);
当x=-1时,y<0,所以当x=3时,也有y<0,即9a+3b+c<0;故⑤正确.
所以①②⑤三项正确.
故选B.