早教吧作业答案频道 -->其他-->
如图:已知MN∥PQ,同旁内角的平分线AB、CD和AD、CD分别相交于点.(1)猜想AC和BD间的关系是什么?(2)试用理由说明你的猜想.(本题将按正确结论的难易程度给分)
题目详情
如图:已知MN∥PQ,同旁内角的平分线AB、CD和AD、CD分别相交于点.
(1)猜想AC和BD间的关系是什么?
(2)试用理由说明你的猜想.(本题将按正确结论的难易程度给分)
(1)猜想AC和BD间的关系是什么?
(2)试用理由说明你的猜想.(本题将按正确结论的难易程度给分)
▼优质解答
答案和解析
(1)答:AC与BD互相平分,且AC=BD,
(2)证明:∵MN∥PQ,
∴∠MAC=∠ACQ、∠ACP=∠NAC,
∵AB、CD分别平分∠MAC和∠ACQ,
∴∠BAC=
∠MAC、∠DCA=
∠ACQ,
又∵∠MAC=∠ACQ,∴∠BAC=∠DCA,
∴AB∥CD,
∵AD、CB分别平分∠ACP和∠NAC,
∴∠BCA=
∠ACP、∠DAC=
∠NAC,
又∵∠ACP=∠NAC,
∴∠BCA=∠DAC,
∴AD∥CB,
又∵AB∥CD,
∴四边形ABCD平行四边形,
∵∠BAC=
∠MAC,∠ACB=
∠ACP,
又∵∠MAC+∠ACP=180°,
∴∠BAC+∠ACP=90°,
∴∠ABC=90°,
∴平行四边形ABCD是矩形.
(2)证明:∵MN∥PQ,
∴∠MAC=∠ACQ、∠ACP=∠NAC,
∵AB、CD分别平分∠MAC和∠ACQ,
∴∠BAC=
1 |
2 |
1 |
2 |
又∵∠MAC=∠ACQ,∴∠BAC=∠DCA,
∴AB∥CD,
∵AD、CB分别平分∠ACP和∠NAC,
∴∠BCA=
1 |
2 |
1 |
2 |
又∵∠ACP=∠NAC,
∴∠BCA=∠DAC,
∴AD∥CB,
又∵AB∥CD,
∴四边形ABCD平行四边形,
∵∠BAC=
1 |
2 |
1 |
2 |
又∵∠MAC+∠ACP=180°,
∴∠BAC+∠ACP=90°,
∴∠ABC=90°,
∴平行四边形ABCD是矩形.
看了 如图:已知MN∥PQ,同旁内...的网友还看了以下:
给出下列命题:(1)p:x-2=0,q:(x-2)(x-3)=0.(2)p:m<-2;q:方程x2 2020-04-09 …
微积分-方程如果p和q是两个多项函数方程,p'(x)=q'(x),x属于R.p(0)=1,q(0) 2020-04-26 …
下列程序段的输出结果是B.int*p,*q,k=1,j=10;p=&j;q=&k;p=q;(*p) 2020-05-14 …
已知p:方程x平方加mx加1=0有两个不等的负根:q:方程4x平方加4(m减2)x加1=0无实跟, 2020-05-15 …
已知关于x的方程x的平方+px+q=0的两个实数根为p,q.求p,q的值将p,q分别代入x²+px 2020-05-16 …
若(p-q)的平方-(q-p)的立方=(q-p)的平方再乘以E则E是(1+p-q)求解答过程会有加 2020-05-20 …
已知p^2-p-1=0,1-q-q^2=0,且pq不等于1.则pq+1/q1-q-q^2=0因为q 2020-06-07 …
如图所示,当用扳手拧螺母时,扳手上的P、Q两点的角速度分别为ωP和ωQ,线速度大小分别为υP和υQ 2020-06-12 …
(1)a^2-2a-1=0,(a-1)/(a+1)=pa+q,求p,q的值;(2)2a^2-3a- 2020-07-31 …
分别指出下列各题中构成的“p或q”,“p且q”,“非P”形式的命题,并指出真假.(1)P:3是13的 2020-12-21 …