早教吧作业答案频道 -->数学-->
问题情境如图1,Rt△ABC中,∠ACB=90°,CD⊥AB,我们可以利用△ABC与△ACD相似证明AC2=AD•AB,这个结论我们称之为射影定理,试证明这个定理;结论运用如图2,正方形ABCD的边长为6,
题目详情
【问题情境】如图1,Rt△ABC中,∠ACB=90°,CD⊥AB,我们可以利用△ABC与△ACD相似证明AC2=AD•AB,这个结论我们称之为射影定理,试证明这个定理;
【结论运用】如图2,正方形ABCD的边长为6,点O是对角线AC、BD的交点,点E在CD上,过点C作CF⊥BE,垂足为F,连接OF,
(1)试利用射影定理证明△BOF∽△BED;
(2)若DE=2CE,求OF的长.
【结论运用】如图2,正方形ABCD的边长为6,点O是对角线AC、BD的交点,点E在CD上,过点C作CF⊥BE,垂足为F,连接OF,
(1)试利用射影定理证明△BOF∽△BED;
(2)若DE=2CE,求OF的长.
▼优质解答
答案和解析
【问题情境】
证明:如图1,
∵CD⊥AB,
∴∠ADC=90°,
而∠CAD=∠BAC,
∴Rt△ACD∽Rt△ABC,
∴AC:AB=AD:AC,
∴AC2=AD•AB;
【结论运用】
(1)证明:如图2,
∵四边形ABCD为正方形,
∴OC⊥BO,∠BCD=90°,
∴BC2=BO•BD,
∵CF⊥BE,
∴BC2=BF•BE,
∴BO•BD=BF•BE,
即
=
,
而∠OBF=∠EBD,
∴△BOF∽△BED;
(2)∵BC=CD=6,
而DE=CE,
∴DE=4,CE=2,
在Rt△BCE中,BE=
=2
,
在Rt△OBC中,OB=
BC=3
,
∵△BOF∽△BED,
∴
=
,即
=
,
∴OF=
.
证明:如图1,
∵CD⊥AB,
∴∠ADC=90°,
而∠CAD=∠BAC,
∴Rt△ACD∽Rt△ABC,
∴AC:AB=AD:AC,
∴AC2=AD•AB;
【结论运用】
(1)证明:如图2,
∵四边形ABCD为正方形,
∴OC⊥BO,∠BCD=90°,
∴BC2=BO•BD,
∵CF⊥BE,
∴BC2=BF•BE,
∴BO•BD=BF•BE,
即
BO |
BE |
BF |
BD |
而∠OBF=∠EBD,
∴△BOF∽△BED;
(2)∵BC=CD=6,
而DE=CE,
∴DE=4,CE=2,
在Rt△BCE中,BE=
22+62 |
10 |
在Rt△OBC中,OB=
| ||
2 |
2 |
∵△BOF∽△BED,
∴
OF |
DE |
BO |
BE |
OF |
4 |
3
| ||
2
|
∴OF=
6
| ||
5 |
看了 问题情境如图1,Rt△ABC...的网友还看了以下:
已知函数f(x)=b*a^x(其中a,b为常量且a>0,a不等于1)的图像经过点A(1,6),B( 2020-04-05 …
1.已知平行四边形ABCD的三个顶点A,B,C的坐标分别为(-2,1),(-1,3),(3,4), 2020-05-13 …
设多项式A=(a^2+1)(b^2+1)-4ab 试说明:不论a、b为何数,A的值总是非负数;令A 2020-05-16 …
已知关于x,y的方程组1.kx2+y+(k-a)=02.y=-(k+a)x+bc只有一组整数解,其 2020-06-12 …
设a>0,b>0,n为正整数且n≠1试比较a^n+b^n与a^(n-1)b+ab^(n-1)的大小 2020-06-16 …
已知a=10000,b=9999,求a^2+b^2-2ab-6a+6b+92.已知a,b,c为三角 2020-07-19 …
已知数列{an}是等差数列,an>0,且公差d不等于0,数列bn}是等比数列,bn>0,且公比q不 2020-07-30 …
二次根式的运算(请给出过程)已知a+b+c=abc0,试求代数式(1-b^2)(1-c^2)/(b 2020-08-02 …
关于二次根式的数学题,1,已知a=1/(2+√3),b=2-√3,试比较ab的大小2.已知x=2-√ 2020-11-12 …
类比5/6=1/2+1/3,试一试,你能将3x+4/(x-1)(x-2)写成A/x-1+B/x-2的 2020-11-29 …