早教吧作业答案频道 -->数学-->
问题情境如图1,Rt△ABC中,∠ACB=90°,CD⊥AB,我们可以利用△ABC与△ACD相似证明AC2=AD•AB,这个结论我们称之为射影定理,试证明这个定理;结论运用如图2,正方形ABCD的边长为6,
题目详情
【问题情境】如图1,Rt△ABC中,∠ACB=90°,CD⊥AB,我们可以利用△ABC与△ACD相似证明AC2=AD•AB,这个结论我们称之为射影定理,试证明这个定理;
【结论运用】如图2,正方形ABCD的边长为6,点O是对角线AC、BD的交点,点E在CD上,过点C作CF⊥BE,垂足为F,连接OF,
(1)试利用射影定理证明△BOF∽△BED;
(2)若DE=2CE,求OF的长.
【结论运用】如图2,正方形ABCD的边长为6,点O是对角线AC、BD的交点,点E在CD上,过点C作CF⊥BE,垂足为F,连接OF,
(1)试利用射影定理证明△BOF∽△BED;
(2)若DE=2CE,求OF的长.
▼优质解答
答案和解析
【问题情境】
证明:如图1,
∵CD⊥AB,
∴∠ADC=90°,
而∠CAD=∠BAC,
∴Rt△ACD∽Rt△ABC,
∴AC:AB=AD:AC,
∴AC2=AD•AB;
【结论运用】
(1)证明:如图2,
∵四边形ABCD为正方形,
∴OC⊥BO,∠BCD=90°,
∴BC2=BO•BD,
∵CF⊥BE,
∴BC2=BF•BE,
∴BO•BD=BF•BE,
即
=
,
而∠OBF=∠EBD,
∴△BOF∽△BED;
(2)∵BC=CD=6,
而DE=CE,
∴DE=4,CE=2,
在Rt△BCE中,BE=
=2
,
在Rt△OBC中,OB=
BC=3
,
∵△BOF∽△BED,
∴
=
,即
=
,
∴OF=
.
证明:如图1,
∵CD⊥AB,
∴∠ADC=90°,
而∠CAD=∠BAC,
∴Rt△ACD∽Rt△ABC,
∴AC:AB=AD:AC,
∴AC2=AD•AB;
【结论运用】
(1)证明:如图2,
∵四边形ABCD为正方形,
∴OC⊥BO,∠BCD=90°,
∴BC2=BO•BD,
∵CF⊥BE,
∴BC2=BF•BE,
∴BO•BD=BF•BE,
即
BO |
BE |
BF |
BD |
而∠OBF=∠EBD,
∴△BOF∽△BED;
(2)∵BC=CD=6,
而DE=CE,
∴DE=4,CE=2,
在Rt△BCE中,BE=
22+62 |
10 |
在Rt△OBC中,OB=
| ||
2 |
2 |
∵△BOF∽△BED,
∴
OF |
DE |
BO |
BE |
OF |
4 |
3
| ||
2
|
∴OF=
6
| ||
5 |
看了 问题情境如图1,Rt△ABC...的网友还看了以下:
题目是证明:已知a,b,c是3个两两互不相同的有理数,证明:根号里一个(a-b)平方分之一+(b-c 2020-03-30 …
刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意有理数对(a,b)进入其中时,会得到 2020-03-31 …
判断下列计算是否正确,并简要说明理由.(1)a*a的平方=a的平方(2)a+a的平方=a的三次方( 2020-04-25 …
已知A=a+2,B=a的平方-a+5,c=a的平方+5a-19,其中a>2.(1)试说明A-B〈0 2020-05-13 …
a,b,c是有理数,a的平方根加b 的平方根等于c,证明a的平方根和b的平方根都是有理数?怎么证明 2020-05-16 …
对有理数a,b定义运算★:a ★b=a的b次方.例如(-5)★3=(-5)的3次方=-125.对有 2020-05-16 …
社会主义初级阶段理论具有重要的意义,表现在这一理论( )A.明确了我国的基本国情 B.明 2020-06-05 …
请问勾股定理怎样证明?听说爱因斯坦13岁就证明了,而我都14岁了,都没办法证明.勾股定理:一个直角 2020-06-10 …
如何证明韦达定理逆定理请证明:设X1,X2,方程aX^2+bX+c=0(a不等于0,b^2-4ac 2020-08-01 …
一个10人的办公室里有5名男性和5名女性,现在需要形成一个由4人组成的委员会,研究办公环境中是否允许 2020-10-31 …