早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知在平行四边形ABCD中,AE⊥BC于E点,DF平分∠ADC交线段AE于F点.(1)如图1,若AE=AD,求证:CD=AF+BE;(2)如图2,若AE:AD=a:b,试探究线段CD、AF、BE之间所满足的等量关系,请直接写出你

题目详情
已知在平行四边形ABCD中,AE⊥BC于E点,DF平分∠ADC 交线段AE于F点.
(1)如图1,若AE=AD,求证:CD=AF+BE;
(2)如图2,若AE:AD=a:b,试探究线段CD、AF、BE之间所满足的等量关系,请直接写出你的结论.
作业帮
▼优质解答
答案和解析
(1)证明:延长EA到G,使得AG=BE,连接DG,
∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,AD=BC,
∵AE⊥BC于点E,
∴∠AEB=∠AEC=90°,
∴∠AEB=∠DAG=90°,
∴∠DAG=90°,
在△ABE和△DGA中
BE=GA
∠GAD=∠BEA
AE=AD

∴△ABE≌△DGA,
∴∠1=∠2,DG=AB,∠B=∠G,
∵四边形ABCD是平行四边形,
∴∠B=∠ADC,
∵∠B+∠1=∠ADC+∠2=90°,∠3=∠4,
∴∠GDF=90°-∠4,∠GFD=90°-∠3,
∴∠GDF=∠GFD,
∴GF=GD=AB=CD,
∵GF=AF+AG=AF+BE,
∴CD=AF+BE;

(2)bCD=aAF+bBE作业帮
理由是:延长EA到G,使得
BE
AG
=
a
b
,连接DG,
即AG=
b
a
BE,
∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,AD=BC,
∵AE⊥BC于点E,
∴∠AEB=∠AEC=90°,
∴∠AEB=∠DAG=90°,
∴∠DAG=90°,
即∠AEB=∠GAD=90°,
AE
AD
=
BE
AG
=
a
b

∴△ABE∽△DGA,
∴∠1=∠2,
AB
DG
=
a
b

∴∠GFD=90°-∠3,
∵DF平分∠ADC,
∴∠3=∠4,
∴∠GDF=∠2+∠3=∠1+∠4=180°-∠FAD-∠3=90°-∠3.
∴∠GDF=∠GFD,
∴DG=GF,
AB
DG
=
a
b
,AB=CD(已证),
∴bCD=aDG=a(
b
a
BE+AF),
即 bCD=aAF+bBE.