早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设正数xyz满足3x+4y+5z=1求1/(x+y)+1/(y+z)+1/(z+x)的最小值

题目详情
设正数xyz满足3x+4y+5z=1求1/(x+y)+1/(y+z)+1/(z+x)的最小值
▼优质解答
答案和解析
【解一】
3x+4y+5y =(x+y)+3(y+z)+2(x+z)=1
原式=〔(x+y)+3(y+z)+2(x+z)〕〔1/(x+y) +1/(y+z) +1/(z+x)〕=1+3+2+〔(x+y)/(y+z)+3(y+z)/(x+y)〕+〔(x+y)/(x+z)+2(x+z)/(x+y)〕+〔3(y+z)/(x+z)+2(x+z)/(y+z)〕= 6+2√3+2√2+2√6,当且仅当(x+y)/(y+z)=3(y+z)/(x+y)且(x+y)/(x+z)=2(x+z)/(x+y)时等号成立,结合3x+4y+5Z=1,解得x=y=1/(2+5√2),z=(√2-1)/(2+5√2),
所以原式的最小值为6+2√3+2√2+2√6.
【解二】
3x+4y+5z=(x+y)+3(y+z)+2(z+x)=1
所以由柯西不等式得:
[(x+y)+3(y+z)+2(z+x)]*[1/(x+y)+1/(y+z)+1/(z+x)]
>=(1+√3+√2)^2
=6+2√3+2√2+2√6
看了 设正数xyz满足3x+4y+...的网友还看了以下: