早教吧作业答案频道 -->数学-->
阅读下面材料,并解答问题.材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.解析由分母为-x2+1,可设-x4-x2+3=(-x2+1)(x2+a)+b则-x4-x2+3=(-x2+1)(x2+a)+b=-x4-ax2+x2+a
题目详情
阅读下面材料,并解答问题.
材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.
【解析】
由分母为-x2+1,可设-x4-x2+3=(-x2+1)(x2+a)+b
则-x4-x2+3=(-x2+1)(x2+a)+b=-x4-ax2+x2+a+b=-x4-(a-1)x2+(a+b)
∵对应任意x,上述等式均成立,∴,∴a=2,b=1
∴==x2+2+
这样,分式被拆分成了一个整式x2+2与一个分式的和.
解答:
(1)将分式拆分成一个整式与一个分式(分子为整数)的和的形式.
(2)试说明的最小值为8.
材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.
【解析】
由分母为-x2+1,可设-x4-x2+3=(-x2+1)(x2+a)+b
则-x4-x2+3=(-x2+1)(x2+a)+b=-x4-ax2+x2+a+b=-x4-(a-1)x2+(a+b)
∵对应任意x,上述等式均成立,∴,∴a=2,b=1
∴==x2+2+
这样,分式被拆分成了一个整式x2+2与一个分式的和.
解答:
(1)将分式拆分成一个整式与一个分式(分子为整数)的和的形式.
(2)试说明的最小值为8.
▼优质解答
答案和解析
(1)由分母为-x2+1,可设-x4-6x2+8=(-x2+1)(x2+a)+b,按照题意,求出a和b的值,即可把分式拆分成一个整式与一个分式(分子为整数)的和的形式;
(2)对于x2+7+当x=0时,这两个式子的和有最小值,最小值为8,于是求出的最小值.
【解析】
(1)由分母为-x2+1,可设-x4-6x2+8=(-x2+1)(x2+a)+b
则-x4-6x2+8=(-x2+1)(x2+a)+b=-x4-ax2+x2+a+b=-x4-(a-1)x2+(a+b)
∵对应任意x,上述等式均成立,
∴,
∴a=7,b=1,
∴===x2+7+
这样,分式被拆分成了一个整式x2+7与一个分式的和.
(2)由=x2+7+知,
对于x2+7+,当x=0时,这两个式子的和有最小值,最小值为8,
即的最小值为8.
(2)对于x2+7+当x=0时,这两个式子的和有最小值,最小值为8,于是求出的最小值.
【解析】
(1)由分母为-x2+1,可设-x4-6x2+8=(-x2+1)(x2+a)+b
则-x4-6x2+8=(-x2+1)(x2+a)+b=-x4-ax2+x2+a+b=-x4-(a-1)x2+(a+b)
∵对应任意x,上述等式均成立,
∴,
∴a=7,b=1,
∴===x2+7+
这样,分式被拆分成了一个整式x2+7与一个分式的和.
(2)由=x2+7+知,
对于x2+7+,当x=0时,这两个式子的和有最小值,最小值为8,
即的最小值为8.
看了 阅读下面材料,并解答问题.材...的网友还看了以下:
设x1x2属于R,常数a>0,定义运算...设x1x2属于R,常数a>0,定义运算:x1*x2=( 2020-05-13 …
数学:下列四个命题中是真命题的有()①同位角相等②相等的角是对顶角③直角三角形的两个锐角互余④三个 2020-05-16 …
1到3000之间去掉4和7的所有数的个数?每一位数不能带4或7例:4,7,17,78,700,41 2020-06-12 …
商店以每个0.4元的批发价购进一批乒乓球,按0.5元的零售价卖出,当卖到还剩下30个时,已获利12 2020-07-09 …
用一个字形容历史朝代简介1.十个历史朝代,分别为夏、商、秦、汉、周、唐、宋、元、明、清.2.分别用 2020-08-03 …
将下列线性规划问题变换为标准形式minz=x1-x2+x32X1-X2+3X3≤20-X1+8X2+ 2020-10-31 …
英语翻译爱一个人不孤单,想一个人才孤单静静的思念,孤独的享受放开天上的云朵,抛开遗留的誓言喜欢一个人 2020-11-02 …
有两条式子:若x1,x2是一元二次方程ax的平方+bx+c=0(a不等于0)的两根,则x1+x2=- 2020-11-07 …
求f(x)解析式1.已知f(1+1/x)=x2+1/x2+3/x,求f(x)解析式2.已知f(求f( 2020-12-08 …
在每个方格里填入数字1~6中的一个,使得每行和每列的数字都不重复.右边的数表示由粗线隔开的前面三个数 2021-01-14 …