早教吧 育儿知识 作业答案 考试题库 百科 知识分享

甲、乙两名选手在一条河中进行划船比赛,赛道是河中央的长方形ABCD,其中AD=80米,AB=60米.已知水流从左到右,速度为每秒1米,甲乙两名选手从A处同时出发,甲沿顺时针方向划行,乙沿逆

题目详情
甲、乙两名选手在一条河中进行划船比赛,赛道是河中央的长方形ABCD,其中AD=80米,AB=60米.已知水流从左到右,速度为每秒1米,甲乙两名选手从A处同时出发,甲沿顺时针方向划行,乙沿逆时针方向划行,已知甲比乙的静水速度每秒快1米(AB、CD边上的划行速度视为静水速度),两人第一次相遇在CD边上的P点,CD=3CP,那么:
(1)甲选手划行一圈用
5
3
5
3
分钟;
(2)在比赛开始的10分钟内,两人一共相遇了______次.
▼优质解答
答案和解析
(1)由以上分析得:
AB+CP=AD=80,
BC=80,DP=40,所以甲、乙路程比为2:1,则速度比为1:2.
因甲行BC为顺水,而乙行DP为静水,故速度差应为1+1=2米/秒.
乙的静水速度为:2÷(2-1)=2米/秒,则甲的静水速度为:2+1=3米/秒.
所以,甲行一圈的时间为:
60×2÷3+80÷(3+1)+80÷(3-1)
=40+20+40
=100秒
=
5
3
(分钟)
答:甲选手划行一圈用
5
3
分钟;

(2)甲10分钟可行:60×10÷100=6(圈); 同理求得乙行一圈的时间为:6×2÷2+80÷(2+1)+80÷(2-1)
=6+
80
3
+80
=
500
3
(秒);
可知乙10分钟可行60×10÷
500
3
=3.6(圈)
两人相遇次数为6+3=9(次)
答:在比赛开始的10分钟内,两人一共相遇了9次.
故答案为:
5
3
,9.
看了 甲、乙两名选手在一条河中进行...的网友还看了以下: