早教吧作业答案频道 -->数学-->
如图,已知平面直角坐标系,A、B两点的坐标分别为A(2,-3),B(4,-1).(1)若P(p,0)是x轴上的一个动点,则当p=时,△PAB的周长最短;(2)若C(a,0),D(a+3,0)是x轴上的两
题目详情
如图,已知平面直角坐标系,A、B两点的坐标分别为A(2,-3),B(4,-1).
(1)若P(p,0)是x轴上的一个动点,则当p= ___ 时,△PAB的周长最短;
(2)若C(a,0),D(a+3,0)是x轴上的两个动点,则当a= ___ 时,四边形ABDC的周长最短;
(3)设M,N分别为x轴和y轴上的动点,请问:是否存在这样的点M(m,0)、N(0,n),使四边形ABMN的周长最短?若存在,请求出m= ___ ,n= ___ (不必写解答过程);若不存在,请说明理由.
(1)若P(p,0)是x轴上的一个动点,则当p= ___ 时,△PAB的周长最短;
(2)若C(a,0),D(a+3,0)是x轴上的两个动点,则当a= ___ 时,四边形ABDC的周长最短;
(3)设M,N分别为x轴和y轴上的动点,请问:是否存在这样的点M(m,0)、N(0,n),使四边形ABMN的周长最短?若存在,请求出m= ___ ,n= ___ (不必写解答过程);若不存在,请说明理由.
▼优质解答
答案和解析
(1)设点B(4,-1)关于x轴的对称点是B',其坐标为(4,1),
设直线AB'的解析式为y=kx+b,
把A(2,-3),B'(4,1)代入得:
,
解得
,
∴y=2x-7,
令y=0得x=
,
即p=
.
(2)过A点作AE⊥x轴于点E,且延长AE,取A'E=AE.做点F(1,-1),连接A'F.那么A'(2,3).
直线A'F的解析式为y-1=
•(x-1),即y=4x-5,
∵C点的坐标为(a,0),且在直线A'F上,
∴a=
.
(3)存在使四边形ABMN周长最短的点M、N,
作A关于y轴的对称点A′,作B关于x轴的对称点B′,连接A′B′,与x轴、y轴的交点即为点M、N,
∴A′(-2,-3),B′(4,1),
∴直线A′B′的解析式为:y=
x-
,
∴M(
,0),N(0,-
).
m=
,n=-
.
设直线AB'的解析式为y=kx+b,
把A(2,-3),B'(4,1)代入得:
|
解得
|
∴y=2x-7,
令y=0得x=
7 |
2 |
即p=
7 |
2 |
(2)过A点作AE⊥x轴于点E,且延长AE,取A'E=AE.做点F(1,-1),连接A'F.那么A'(2,3).
直线A'F的解析式为y-1=
3-(-1) |
2-1 |
∵C点的坐标为(a,0),且在直线A'F上,
∴a=
5 |
4 |
(3)存在使四边形ABMN周长最短的点M、N,
作A关于y轴的对称点A′,作B关于x轴的对称点B′,连接A′B′,与x轴、y轴的交点即为点M、N,
∴A′(-2,-3),B′(4,1),
∴直线A′B′的解析式为:y=
2 |
3 |
5 |
3 |
∴M(
5 |
2 |
5 |
3 |
m=
5 |
2 |
5 |
3 |
看了 如图,已知平面直角坐标系,A...的网友还看了以下:
在直角坐标系中,对已知点A(3a,4b+a+3),B(b,a-2b+1)关于圆点对称,求a,b的值, 2020-03-30 …
设集合A={a|a=n的平方+1,n属于N},集合B={b=m的平方-2m+2,m属于N},若a属 2020-05-16 …
概率论 P(B|A)+P(非B|非A)=1 求证A B 相互独立P(A),P(B)均大于0小于1, 2020-05-16 …
已知A={1,2,a},B={1,a的二次方},A∪B={1,2,a},求所有可能的a值已知A={ 2020-06-02 …
设P(A)>0,则下面结论正确的:A、P(B|A)P(A)≥P(A)‐P(B)B、P(B|A)P( 2020-07-18 …
1.在三角形abc中,证明a/b-b/a=c(CosB/b-CosA/a)2.在三角形abc中,已 2020-07-21 …
实数的乘法运算与向量的数量积运算类比,不成立的运算律是()。A.a×b=b×a类比a→⋅b→=b→ 2020-07-31 …
集合A(-1,1),集合B(b-a,a+b),a=1是A交B的充分条件,求b的范围求高手们快帮帮小 2020-08-02 …
高中数学问题A∩B=B∩A是集合A交集合B等于集合B交集合A的意思吗,还有别的意思吗A∪B=B∪A 2020-08-02 …
已知正数abc,且a/b+c=b/c+a=c/a+b=k.则在下列四个点中,在正比例函数y=kx图像 2020-11-01 …