早教吧作业答案频道 -->数学-->
如图1,点A'B'的坐标分别为(2,0)和(0,-4),将△A'B'O绕点O按逆时针方向旋转90°后得到△ABO,点A'的对应点是A,点B'的对应点是B(1)写出AB两点的坐标(2)将△ABO沿着垂直于x轴的线段CD折叠(点C在x轴
题目详情
如图1,点A'B'的坐标分别为(2,0)和(0,-4),将△A'B'O绕点O按逆时针方向旋转90°后得到△ABO,点A'的对应点是A,点B'的对应点是B
(1)写出A B两点的坐标
(2)将△ABO沿着垂直于x轴的线段CD折叠(点C在x轴上,D在y轴上,D不与A B重合),使点B落在x轴上,点B的对应点为E,设点C的坐标为(x,0),△CDE△ABO重叠部分的面积为S
试求出S与x之间的函数关系以及自变量的取值范围
是否存在这样的点C,使得△ADB为直角三角形,求出点C坐标
(1)写出A B两点的坐标
(2)将△ABO沿着垂直于x轴的线段CD折叠(点C在x轴上,D在y轴上,D不与A B重合),使点B落在x轴上,点B的对应点为E,设点C的坐标为(x,0),△CDE△ABO重叠部分的面积为S
试求出S与x之间的函数关系以及自变量的取值范围
是否存在这样的点C,使得△ADB为直角三角形,求出点C坐标
▼优质解答
答案和解析
(1)A(0,2),B(4,0)(2分)
设直线AB的解析式y=kx+b,则有
b=2
4k+b=0
解得
k=−1
2
b=2
∴直线AB的解析式为y=−
1
2
x+2(3分)
(2)i)①点E在原点和x轴正半轴上时,重叠部分是△CDE.
则S△CDE=
1
2
BC×CD=
1
2
(4−x)(−
1
2
x+2)
=
1
4
x2−2x+4
当E与O重合时,CE=
1
2
BO=2
∴2≤x<4(4分)
②当E在x轴的负半轴上时,设DE与y轴交于点F,则重叠部分为梯形
∵△OFE∽△OAB
∴
OF
OE
=
OA
0B
=
1
2
,
∴OF=
1
2
OE
又∵OE=4-2x
∴OF=
1
2
(4−2x)=2−x
∴S四边形CDFO=
x
2
×[2−x+(−
1
2
x+2)]
=−
3
4
x2+2x(5分)
当点C与点O重合时,点C的坐标为(0,0)
∴0<x<2(6分)
综合①②得S=
1
4
x2−2x+4(2≤x<4)
−3
4
x2+2x(0<x<2)
(7分)
ii)①当2≤x<4时,S=
1
4
x2−2x+4=
1
4
(x−4)2
∴对称轴是直线x=4
∵抛物线开口向上,
∴在2≤x<4中,S随x的增大而减小
∴当x=2时,S的最大值=
1
4
×(2−4)2=1(8分)
②当0<x<2时,S=−
3
4
x2+2x=−
3
4
(x−
4
3
)2+
4
3
∴对称轴是直线x=
4
3
∵抛物线开口向下∴当x=
4
3
时,S有最大值为
4
3
(9分)
综合①②当x=
4
3
时,S有最大值为
4
3
(10分)
iii)存在,点C的坐标为(
3
2
,0)和(
5
2
,0)(14分)
附:详①当△ADE以点A为直角顶点时,作AE⊥AB交x轴负半轴于点E,
∵△AOE∽△BOA
∴
EO
AO
=
AO
BO
=
1
2
∵AO=2∴EO=1
∴点E坐标为(-1,0)
∴点C的坐标为(
3
2
,0)②当△ADE以点E为直角顶点时
同样有△AOE∽△BOA
OE
AO
=
OA
BO
=
1
2
∴EO=1∴E(1,0)
∴点C的坐标(
5
2
,0)
综合①②知满足条件的坐标有(
3
2
,0)和(
5
2
,0).
(1)A(0,2),B(4,0)(2分)
设直线AB的解析式y=kx+b,则有
b=2
4k+b=0
解得
k=−1
2
b=2
∴直线AB的解析式为y=−
1
2
x+2(3分)
(2)i)①点E在原点和x轴正半轴上时,重叠部分是△CDE.
则S△CDE=
1
2
BC×CD=
1
2
(4−x)(−
1
2
x+2)
=
1
4
x2−2x+4
当E与O重合时,CE=
1
2
BO=2
∴2≤x<4(4分)
②当E在x轴的负半轴上时,设DE与y轴交于点F,则重叠部分为梯形
∵△OFE∽△OAB
∴
OF
OE
=
OA
0B
=
1
2
,
∴OF=
1
2
OE
又∵OE=4-2x
∴OF=
1
2
(4−2x)=2−x
∴S四边形CDFO=
x
2
×[2−x+(−
1
2
x+2)]
=−
3
4
x2+2x(5分)
当点C与点O重合时,点C的坐标为(0,0)
∴0<x<2(6分)
综合①②得S=
1
4
x2−2x+4(2≤x<4)
−3
4
x2+2x(0<x<2)
(7分)
ii)①当2≤x<4时,S=
1
4
x2−2x+4=
1
4
(x−4)2
∴对称轴是直线x=4
∵抛物线开口向上,
∴在2≤x<4中,S随x的增大而减小
∴当x=2时,S的最大值=
1
4
×(2−4)2=1(8分)
②当0<x<2时,S=−
3
4
x2+2x=−
3
4
(x−
4
3
)2+
4
3
∴对称轴是直线x=
4
3
∵抛物线开口向下∴当x=
4
3
时,S有最大值为
4
3
(9分)
综合①②当x=
4
3
时,S有最大值为
4
3
(10分)
iii)存在,点C的坐标为(
3
2
,0)和(
5
2
,0)(14分)
附:详①当△ADE以点A为直角顶点时,作AE⊥AB交x轴负半轴于点E,
∵△AOE∽△BOA
∴
EO
AO
=
AO
BO
=
1
2
∵AO=2∴EO=1
∴点E坐标为(-1,0)
∴点C的坐标为(
3
2
,0)②当△ADE以点E为直角顶点时
同样有△AOE∽△BOA
OE
AO
=
OA
BO
=
1
2
∴EO=1∴E(1,0)
∴点C的坐标(
5
2
,0)
综合①②知满足条件的坐标有(
3
2
,0)和(
5
2
,0).
看了 如图1,点A'B'的坐标分别...的网友还看了以下:
将一植株放在密闭玻璃罩内,置于室外一昼夜,获得实验结果如图所示.下列有关说法错误的是()A.图乙中 2020-05-14 …
如图,在平面直角坐标系中,二次函数y=ax+bx+c的图像经过点A(-3,0),B(1,0),C( 2020-05-15 …
如图,在数轴上,a、b、c所对应得点分别为A、B、C,点P为一动点,其对应的数为x,点P在0到2之 2020-05-16 …
如图,数轴上A、B、C三点的对应都是整数,每格表示1个单位,若A点对应整数为a,B点对应整数为b, 2020-05-17 …
如图1,点A、B分别在数轴原点O的左右两侧,且13OA+50=OB,点B对应数是90.(1)求A点 2020-06-13 …
(1)若函数y=2+cosx,求函数的最大值并求出相应的x.(2)用“五点作图法”列表,描点(1) 2020-06-25 …
下列5个结论:①对应点的连线平行;②对应点的连线相交于一点;③对应线段相等;④变换前后的两个图形是 2020-07-29 …
如图1,已知数轴上有三点A、B、C,AB=12AC,点C对应的数是200.(1)若BC=300,求 2020-07-30 …
如图,若点A在数轴上对应的数为a,点B在数轴上对应的数为b,且a,b满足|a+2|+(b-1)2= 2020-08-03 …
如图,数轴上有A、B两点,分别对应的数为a、b,已知(a+1)的平方与|b-3|互为相反数,点P为数 2020-11-17 …