早教吧 育儿知识 作业答案 考试题库 百科 知识分享

A、B是抛物线上的两点,直线l是线段AB的垂直平分线,当直线l的斜率为时,则直线l在y轴上截距的取值范围是.

题目详情
A、B是抛物线上的两点,直线l是线段AB的垂直平分线,当直线l的斜率为时,则直线l在y轴上截距的取值范围是____.
▼优质解答
答案和解析
【分析】设直线l的方程为 y=x+b,设AB的方程为y=-2x+c,c>0,把把AB的方程代入抛物线y=2x2化简可得
2x2+2x-c=0,利用根与系数的关系及中点公式求得线段AB的中点M的坐标,把M的坐标代入直线l的方程可得c=b->0,解得b的范围.
设直线l的方程为 y=x+b,则AB的斜率为-2,设AB的方程为y=-2x+c,c>0,
把AB的方程 y=-2x+c代入抛物线y=2x2化简可得 2x2+2x-c=0,
∴x1+x2=-1,
故线段AB的中点 M(-,1+c ),由题意知,点 M(-,1+c )在直线l上,
∴1+c=(-)+b,
∴c=b->0,
∴b>
故直线l在y轴上截距的取值范围是 .
【点评】本题考查抛物线的标准方程,以及简单性质的应用,线段的中垂线的性质,得到 c=b->0,是解题的关键.