早教吧作业答案频道 -->数学-->
不定积分题和其他题.F(x)在[0,1]上二阶可导,且limx->0f(x)/x=1,limx->1f(x)/x-1=2证明:1)存在ζ∈(0,1)使f(ζ)=0中.有一段即f(x)在[0,1]上连续,f(0)=f(1)=0,f’(0)•f’(1)>0存在ζ∈(0,1)使f(ζ)=0(
题目详情
不定积分题和其他题.
F(x)在[0,1]上二阶可导,且limx->0 f(x)/x=1 ,limx->1 f(x)/x-1=2 证明:1)存在ζ∈(0,1)
使f(ζ)=0
中.有一段
即f(x)在[0,1]上连续,f(0)=f(1)=0,f’(0)•f’(1)>0 存在ζ∈(0,1)使f(ζ)=0
(这是一个常用结论)
请问是什么结论 (这个结论的名称和证明过程)
1
∫ ln(1+x^2)dx=ln2-2(1-4/π) 这个是怎样算的?
0
洛必达法则
Limf’(x)/g’(x)存在 Limf’(x)/g’(x)=A 所以 Limf(x)/g(x)=A
但不能简单的Limf(x)/g(x)=A→Limf’(x)/g’(x)=A.
这个结论.
我见有些题.Limf(x)/g(x)=A→Limf’(x)/g’(x)=A.可以这样用.
有些题.这样用会被说是错的.请问为什么啊?
∫ (1+x^4)/(1+x^6)dx 怎样算?
arctanx +1/3arctanx^3+c
∫ 1/sin(x+π/4)dx
ln|csc(x+π/4)-cot(x+π/4)|+c
F(x)在[0,1]上二阶可导,且limx->0 f(x)/x=1 ,limx->1 f(x)/x-1=2 证明:1)存在ζ∈(0,1)
使f(ζ)=0
中.有一段
即f(x)在[0,1]上连续,f(0)=f(1)=0,f’(0)•f’(1)>0 存在ζ∈(0,1)使f(ζ)=0
(这是一个常用结论)
请问是什么结论 (这个结论的名称和证明过程)
1
∫ ln(1+x^2)dx=ln2-2(1-4/π) 这个是怎样算的?
0
洛必达法则
Limf’(x)/g’(x)存在 Limf’(x)/g’(x)=A 所以 Limf(x)/g(x)=A
但不能简单的Limf(x)/g(x)=A→Limf’(x)/g’(x)=A.
这个结论.
我见有些题.Limf(x)/g(x)=A→Limf’(x)/g’(x)=A.可以这样用.
有些题.这样用会被说是错的.请问为什么啊?
∫ (1+x^4)/(1+x^6)dx 怎样算?
arctanx +1/3arctanx^3+c
∫ 1/sin(x+π/4)dx
ln|csc(x+π/4)-cot(x+π/4)|+c
▼优质解答
答案和解析
1:不妨设f'(0)>0,f’(1)>0.根据极限定义f'(0)=lim x->0 (f(x)-f(0))/(x-0)=lim x->0 f(x)/x>0,由于这里的x是(0,1)中趋于0的正数,故这里f(x)>0,这就是说在(0,1)中存在x1使得f(x1)>0.同样f'(1)=lim x->1 (f(x)-f(1))/(x-1)=lim x->1 f(x)/(x-1)>0,由于这里的x是(0,1)趋于1的数,所以(x-1)
看了 不定积分题和其他题.F(x)...的网友还看了以下:
还是lingo问题road(country,country):length,xie,c;endse 2020-05-13 …
ansys直接建立有限元模型问题finish/clear/prep7n,1,0,0,0n,2,0, 2020-05-17 …
待定系数法8+2D-2E+F=0.36+5D+3E+F=0.10+3D-E+F=0应该怎么解出DE 2020-05-22 …
f(x)单调增加有连续导数,且f(0)=0,f(a)=b,求证,f(x)单调增加有连续导数,且f( 2020-06-15 …
高等数学问题设f(0)=0则f(x)在点x=0可导的充要条件是:其中有个选项是limf(h-sin 2020-06-18 …
什么是拐点,数学中有什么特别意义?目前市面所谓经济学家的拐点说法是错误的,比如y=x^3,则二阶导 2020-06-22 …
设f'(x)连续,f(0)=0,f'(0)不等于0,求lim∫f(t)dt/∫f(t)dt注明x趋 2020-07-16 …
设f'(x)=arctan[(x-1)^2],f(0)=0,求∫(0,1)f(x)dx,其中0是下 2020-07-22 …
曲线y=f(x)≥0(x≥0)围成一以[0,x]为底的曲边梯形,其面积与f(x)的4次幂...曲线y 2020-10-30 …
设函数f(x)对任意函数x,y,有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,求f 2020-12-08 …