早教吧作业答案频道 -->其他-->
定义区间(a,b),[a,b),(a,b][a,b]的长度均为d=b-a,多个区间并集的长度为各区间长度之和,例如�定义区间(a,b),[a,b),(a,b][a,b]的长度均为d=b-a,多个区间并集的长度为各
题目详情
定义区间(a,b),[a,b),(a,b][a,b]的长度均为d=b-a,多个区间并集的长度为各区间长度之和,例如�
定义区间(a,b),[a,b),(a,b][a,b]的长度均为d=b-a,多个区间并集的长度为各区间长度之和,例如(1,2)∪(3,5)的长度为d=(2-1)+(5-3)=3,用[x]表示不超过x的最大整数,记<x>=x-[x],其中x∈R.设f(x)=[x]?<x>,g(x)=2x-[x]-2,若d1,d2,d3分别表示不等式f(x)>g(x)、方程f(x)=g(x)、不等式f(x)<g(x)解集的长度,则当0≤x≤2012时,有( )
A.d1=2,d2=0,d3=2010
B.d1=1,d2=1,d3=2010
C.d1=2,d2=1,d3=2009
D.d1=2,d2=2,d3=2008
定义区间(a,b),[a,b),(a,b][a,b]的长度均为d=b-a,多个区间并集的长度为各区间长度之和,例如(1,2)∪(3,5)的长度为d=(2-1)+(5-3)=3,用[x]表示不超过x的最大整数,记<x>=x-[x],其中x∈R.设f(x)=[x]?<x>,g(x)=2x-[x]-2,若d1,d2,d3分别表示不等式f(x)>g(x)、方程f(x)=g(x)、不等式f(x)<g(x)解集的长度,则当0≤x≤2012时,有( )
A.d1=2,d2=0,d3=2010
B.d1=1,d2=1,d3=2010
C.d1=2,d2=1,d3=2009
D.d1=2,d2=2,d3=2008
▼优质解答
答案和解析
∵f(x)=[x]?<x>=[x]?(x-[x])=[x]x-[x]2,g(x)=2x-[x]-2,
f(x)>g(x),等价于[x]x-[x]2>2x-[x]-2,即([x]-2)x>[x]2-[x]-2,即 ([x]-2)x>([x]-2)([x]+1).
当x∈[0,1)时,[x]=0,上式可化为x<1,∴x∈[0,1);
当x∈[1,2)时,[x]=1,上式可化为x<2,∴x∈[1,2);
当x∈[2,3)时,[x]=2,上式可化为 0>0,∴x∈?;
当x∈[3,2012]时,[x]-1>0,上式可化为x>[x]+1,∴x∈?;
∴f(x)>g(x)在0≤x≤2012时的解集为[0,2),故d1=2.
f(x)=g(x)等价于[x]x-[x]2 =2x-[x]-2,即([x]-2)x=[x]2-[x]-2,
当x∈[0,1)时,[x]=0,上式可化为x=1,∴x∈?;
当x∈[1,2)时,[x]=1,上式可化为x=2,∴x∈?;
当x∈[2,3)时,[x]=2,上式可化为0=0,∴x∈[2,3);
当x∈[3,2012]时,[x]-2>0,上式可化为x=[x]+1,∴x∈?;
∴f(x)=g(x)在0≤x≤2012时的解集为[2,3),故d2=1.
f(x)<g(x)等价于[x]x-[x]2 <2x-[x]-2,即([x]-2)x<[x]2-[x]-2,
当x∈[0,1)时,[x]=0,上式可化为x>1,∴x∈?;
当x∈[1,2)时,[x]=1,上式可化为x>2,∴x∈?;
当x∈[2,3)时,[x]=2,上式可化为 0<0,∴x∈?;
当x∈[3,2012]时,[x]-2>0,上式可化为x<[x]+1,∴x∈[3,2012];
∴f(x)<g(x)在0≤x≤2012时的解集为[3,2012],故d3=2009.
故选C.
f(x)>g(x),等价于[x]x-[x]2>2x-[x]-2,即([x]-2)x>[x]2-[x]-2,即 ([x]-2)x>([x]-2)([x]+1).
当x∈[0,1)时,[x]=0,上式可化为x<1,∴x∈[0,1);
当x∈[1,2)时,[x]=1,上式可化为x<2,∴x∈[1,2);
当x∈[2,3)时,[x]=2,上式可化为 0>0,∴x∈?;
当x∈[3,2012]时,[x]-1>0,上式可化为x>[x]+1,∴x∈?;
∴f(x)>g(x)在0≤x≤2012时的解集为[0,2),故d1=2.
f(x)=g(x)等价于[x]x-[x]2 =2x-[x]-2,即([x]-2)x=[x]2-[x]-2,
当x∈[0,1)时,[x]=0,上式可化为x=1,∴x∈?;
当x∈[1,2)时,[x]=1,上式可化为x=2,∴x∈?;
当x∈[2,3)时,[x]=2,上式可化为0=0,∴x∈[2,3);
当x∈[3,2012]时,[x]-2>0,上式可化为x=[x]+1,∴x∈?;
∴f(x)=g(x)在0≤x≤2012时的解集为[2,3),故d2=1.
f(x)<g(x)等价于[x]x-[x]2 <2x-[x]-2,即([x]-2)x<[x]2-[x]-2,
当x∈[0,1)时,[x]=0,上式可化为x>1,∴x∈?;
当x∈[1,2)时,[x]=1,上式可化为x>2,∴x∈?;
当x∈[2,3)时,[x]=2,上式可化为 0<0,∴x∈?;
当x∈[3,2012]时,[x]-2>0,上式可化为x<[x]+1,∴x∈[3,2012];
∴f(x)<g(x)在0≤x≤2012时的解集为[3,2012],故d3=2009.
故选C.
看了 定义区间(a,b),[a,b...的网友还看了以下:
1.a≠0,b≠0,则a/|a|+b/|b|的不同取值的个数为()A.3B.2C.1D.02.若|x 2020-03-31 …
下列说法中正确的是()A.二氯甲烷(CH2Cl2)分子的中心原子是SP3杂化,键角均为109°28 2020-04-09 …
和尚吃馒头(数学题)庙里有很多和尚,有大和尚和小和尚.平均每7个大和尚每天吃41个馒头,平均每29 2020-04-25 …
基本不等式超费解130已知a>b>0,求a2+1/(a*b)+1/[a*(a-b)]的最小值.a2 2020-05-13 …
设集合A={1,a,b},B={a,a^2,ab}且A=B,求实数A,B的值因为集合需要满足互异性 2020-05-15 …
三个小球用细绝缘线悬挂起来,当当它们两两靠近时均相互吸引,则下列说法中正确的是A.两个带正电,一个 2020-06-16 …
有一个所有棱长均为a的正四棱锥P-ABCD,还有一个所有棱长均为a的正三棱锥,将此三棱锥的一个面与 2020-06-27 …
假设集合A满足以下条件:诺a∈A,a不等于1,则1-a分之1属于A若a属于A,则1-a分之一属于A 2020-07-03 …
有一对等位基因A、a,体细胞中含有两个A、一个A和不含A的个体分别对应一种表现型,基因型、表现型及所 2020-11-02 …
递回关系式的运算公式(数列)以下是推导一个公式"a=a+r(1-p^n)/(1-p)"的过程a=p* 2021-01-13 …