早教吧作业答案频道 -->数学-->
M={a,b,c}N={-1,0,1},由M到N的映射f满足条件f(a)+f(b)=f(c)这样的映射共有()
题目详情
M={a,b,c}N={-1,0,1},由M到N的映射f满足条件f(a)+f(b)=f(c)这样的映射共有( )
▼优质解答
答案和解析
映射可以多对一,不能一对多,因此对于a,b,c可以f(a)=f(b)=f(c)=1,所以由M到N的映射一共有3×3×3=27种,但是有f(a)+f(b)=f(c)作为条件限制,所以讨论:
1,一一对应时,这是f(c)必为0,f(a)和f(b)分别为1和-1,这种情况有两种:
①f(c)=0 f(a)=1 f(b)=-1
②f(c)=0 f(a)=-1 f(b)=1
2,二对一时,这时f(a)和f(b)之一为零,另一个与f(c)取同值,这种情况有4种:
①② f(a)=0 f(b)=f(c)=±1
③④ f(b)=0 f(a)=f(c)=±1
3,三对一时,这时只能是f(a)=f(b)=f(c)=0一种;
综上所述,一共有7种情况满足题设.
1,一一对应时,这是f(c)必为0,f(a)和f(b)分别为1和-1,这种情况有两种:
①f(c)=0 f(a)=1 f(b)=-1
②f(c)=0 f(a)=-1 f(b)=1
2,二对一时,这时f(a)和f(b)之一为零,另一个与f(c)取同值,这种情况有4种:
①② f(a)=0 f(b)=f(c)=±1
③④ f(b)=0 f(a)=f(c)=±1
3,三对一时,这时只能是f(a)=f(b)=f(c)=0一种;
综上所述,一共有7种情况满足题设.
看了 M={a,b,c}N={-1...的网友还看了以下:
请问谁有按照反应规律分的高中化学方程式,比如碱和非金属氧化物相互转化一类类似于此的?有满意的必重赏 2020-05-02 …
已知定义域为R的函数f(x)满足f[f(x)-x^2+x]=f(x)-x^2+x,设有且仅有一个实 2020-05-13 …
对于定义在上的函数f(x),若实数xo满足对于定义在上的函数f(x),若实数x0满足f(x0)=x 2020-05-13 …
定义在R上的函数f(x),对任意x,y∈R,有f(x+y)+f(x-y)=2f(x)*f(y),且 2020-05-13 …
高一数学,若定义在R上的函数f(x)满足:对任意x1,x2∈R,有f(x1+x2)=f(x1)+f 2020-05-22 …
求下列各题中的函数f(x)的解析式(1)已知f(√x+2)=x+4√x,求f(x)(2)已知f(x 2020-06-02 …
已知定义在R上的函数f(x)满足条件:1、对任意x、y都有F(x)+F(y)-F(X+Y)=12、 2020-06-03 …
挂在墙上的照片怎样摆才漂亮我的婚纱照有48寸1张、30寸3张、20寸1张、12寸2张,暂时还没有选 2020-06-09 …
下列各项中,属于藻类植物、苔藓植物、蕨类植物的说法不正确的是()A.苔藓植物无真正的根,开始有茎、 2020-06-11 …
关于函数的,举个例子,f(x)和f(x+2)都是定义在[-2,2]的偶函数,那f(x)=f(-x) 2020-06-11 …