早教吧 育儿知识 作业答案 考试题库 百科 知识分享

数学几何题:正方形ABCD正方形ABCD中有一点P,使PA=PB,角PAB=角PBA=15°连结PD、PC,求证:三角形PCD为正三角形

题目详情
数学几何题:正方形ABCD
正方形ABCD中有一点P,使PA=PB,角PAB=角PBA=15°
连结PD、PC,求证:三角形PCD为正三角形
▼优质解答
答案和解析
因为角PAB=15°
所以角PAD=75°
所以角PAD=30°
所以角PDC=60°
同理可知 PCD=60°
且PA=PB,AD=BC,角PAD=75°= 角PBC
所以△PAD 全等于△PBC
所以 PC=PD
且以证PDC=60°,PCD=60°
所以△PCD是正三角形
就是这么简单