早教吧 育儿知识 作业答案 考试题库 百科 知识分享

集合的有关术语和符号

题目详情
集合的有关术语和符号
▼优质解答
答案和解析
数学概念
  集合是把人们的直观的或思维中的某些确定的能够区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合.组成一集合的那些对象称为这一集合的元素(或简称为元).现代数学还用“公理”来规定集合.
最基本公理例如:
外延公理
  对于任意的集合S1和S2,S1=S2当且仅当对于任意的对象a,都有若a∈S1,则a∈S2;若a∈S2,则a∈S1.
无序对集合存在公理
  对于任意的对象a与b,都存在一个集合S,使得S恰有两个元素,一个是对象a,一个是对象b.由外延公理,由它们组成的无序对集合是唯一的,记做{a,b}.由于a,b是任意两个对象,它们可以相等,也可以不相等.当a=b时,{a,b},可以记做{a}或{b},并且称之为单元集合.空集合存在公理:存在一个集合,它没有任何元素.
数学术语
集合的概念
  指定的某些对象的全体称为集合.集合是一定范围的,确定的,可以区别的事物,当作一个整体来看待,就叫做集合,简称集,其中各事物叫做集合的元素或简称元.
任何集合是它自身的子集.
一般的,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集).构成集合的每个对象叫做这个集合的元素(或成员).
元素与集合的关系
  元素与集合的关系有“属于”与“不属于”两种.
集合与集合之间的关系
  某些指定的对象集在一起就成为一个集合 集合符号
,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做Φ.空集是任何集合的子集,是任何非空集的真子集.任何集合是它本身的子集.子集,真子集都具有传递性.
集合运算法则
  并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}
交集:以属于A且属于B的元素集合表示为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}
 对称差集:设A,B 为集合,A与B的对称差集AÅB定义为:AÅB=(A-B)∪(B-A)   例如:A={a,b,c},B={b,d},则AÅB={a,c,d}   对称差运算的另一种定义是:AÅB=(A∪B)-(A∩B)
无限集:定义:集合里含有无限个元素的集合叫做无限集
有限集:令N*是正整数的全体,且N_n={1,2,3,……,n},如果存在一个正整数n,使得集合A与N_n一一对应,那么A叫做有限集合.
差集:以属于A而不属于B的元素为元素的集合称为A与B的差(集).记作:A\B={x│x∈A,x不属于B}.  注:空集包含于任何集合,但不能说“空集属于任何集合”.
补集:是从差集中引出的概念,指属于全集U不属于集合A的元素组成的集合称为集合A的补集,记作CuA,即CuA={x|x∈U,且x不属于A}   空集也被认为是有限集合.  例如,全集U={1,2,3,4,5} 而A={1,2,5} 那么全集有而A中没有的3,4就是CuA,是A的补集.CuA={3,4}.  在信息技术当中,常常把CuA写成~A.
集合元素的性质
  1.确定性:每一个对象都能确定是不是某一集合的元素,没有确定性就不能成为集合,例如“个子高的同学”“很小的数”都不能构成集合.这个性质主要用于判断一个集合是否能形成集合.
2.独立性:集合中的元素的个数、集合本身的个数必须为自然数.
3.互异性:集合中任意两个元素都是不同的对象.如写成{1,1,2},等同于{1,2}.互异性使集合中的元素是没有重复,两个相同的对象在同一个集合中时,只能算作这个集合的一个元素.
4.无序性:{a,b,c}{c,b,a}是同一个集合.
5.纯粹性:所谓集合的纯粹性,用个例子来表示.集合A={x|x
看了 集合的有关术语和符号...的网友还看了以下: