早教吧作业答案频道 -->数学-->
有关复数的题目一.在复数集C中分解因式:1)x^2+52)2x^2-6x+53)x^2-2xcosα+14)x^6-1二.解下列方程:1)x^4+24i=02)(x+1)^9=(1+i)^9三.巳知复数Z=x+yi(x,y全属于R),求下列各式的实部与虚部:1)Z^22)Z^33)1/Z4)V0Z+(M/2
题目详情
有关复数的题目
一.在复数集C中分解因式:
1) x^2+5
2) 2x^2-6x+5
3) x^2-2xcosα+1
4) x^6-1
二.解下列方程:
1) x^4+24i=0
2) (x+1)^9=(1+i)^9
三.巳知复数Z=x+yi(x,y全属于R),求下列各式的实部与虚部:
1) Z^2
2) Z^3
3) 1/Z
4) V0Z+(M/2π)*1/Z (V0,M全属于R)
四.巳知(x+yi)^3=a+bi,这里a,b,x,y全属于R,求证
(a/x)+(b/y)=4(x^-y^2)
一.在复数集C中分解因式:
1) x^2+5
2) 2x^2-6x+5
3) x^2-2xcosα+1
4) x^6-1
二.解下列方程:
1) x^4+24i=0
2) (x+1)^9=(1+i)^9
三.巳知复数Z=x+yi(x,y全属于R),求下列各式的实部与虚部:
1) Z^2
2) Z^3
3) 1/Z
4) V0Z+(M/2π)*1/Z (V0,M全属于R)
四.巳知(x+yi)^3=a+bi,这里a,b,x,y全属于R,求证
(a/x)+(b/y)=4(x^-y^2)
▼优质解答
答案和解析
一.在复数集C中分解因式:
1) x^2+5=x^2-(-5)=(x+√5i)(x-√5i)
2) 2x^2-6x+5=2(x^2-3x+5/2)=2(x^2-3x+9/4+1/4)=2(x-3/2+i/2)(x-3/2-i/2)
3) x^2-2xcosα+1=x^2-2xcosα+cos^2α+sin^2α=(x-cosα+isinα)(x-cosα-isinα)
4) x^6-1=(x^3+1)(x^3-1)=(x+1)(x-1)(x^2+x+1)(x^2-x+1)=(x+1)(x-1)(x-(1+√3i)/2)(x-(1-√3i)/2)(x-(-1+√3i)/2)(x-(-1-√3i)/2)
二.解下列方程:
1) x^4+24i=0
x^4-12(1-i)^2=0
(x^2+2√3(1-i))(x^2-2√3(1-i))=0
(x+r(icosθ+sinθ))(x-r(icosθ+sinθ))(x+r(cosθ-isinθ))(x-r(cosθ-isinθ))=0
于是得到四个解.其中,r=4√24(四次根号24),θ=π/8,cosθ=√(2+√2)/2,sinθ=√(2-√2)/2.
2) (x+1)^9=(1+i)^9
先分解因式x^9-y^9=(x-y)(x^2+xy+y^2)(x^6+x^3y^3+y^6),然后用前两个式子可以得到三个根
x=i
x=(-3-i+√3(-1+i))/2
x=(-3-i-√3(-1+i))/2
至于剩下六个根繁得出奇,略.
三.巳知复数Z=x+yi(x,y全属于R),求下列各式的实部与虚部:
1) Z^2=(x^2-y^2)+2xyi
2) Z^3=(x^3-3xy^2)+(3x^2y-y^3)i
3) 1/Z=1/(x+yi)=(x-yi)/(x^2+y^2)=x/(x^2+y^2)-yi/(x^2+y^2)
4) V0Z+(M/2π)*1/Z=V0x+V0yi+Mx/2π(x^2+y^2)-Myi/2π(x^2+y^2)
=[V0x+Mx/2π(x^2+y^2)]+[V0y-Myi/2π(x^2+y^2)]i
从以上结果很容易得出实部和虚部.
四.巳知(x+yi)^3=a+bi,这里a,b,x,y全属于R,求证
(a/x)+(b/y)=4(x^-y^2)
证明:由上题可知,(x+yi)^3=(x^3-3xy^2)+(3x^2y-y^3)i,根据复数相等的定义,a=(x^3-3xy^2),b=(3x^2y-y^3).
所以(a/x)+(b/y)
=(x^2-3y^2)+(3x^2-y^2)
=4(x^-y^2).
1) x^2+5=x^2-(-5)=(x+√5i)(x-√5i)
2) 2x^2-6x+5=2(x^2-3x+5/2)=2(x^2-3x+9/4+1/4)=2(x-3/2+i/2)(x-3/2-i/2)
3) x^2-2xcosα+1=x^2-2xcosα+cos^2α+sin^2α=(x-cosα+isinα)(x-cosα-isinα)
4) x^6-1=(x^3+1)(x^3-1)=(x+1)(x-1)(x^2+x+1)(x^2-x+1)=(x+1)(x-1)(x-(1+√3i)/2)(x-(1-√3i)/2)(x-(-1+√3i)/2)(x-(-1-√3i)/2)
二.解下列方程:
1) x^4+24i=0
x^4-12(1-i)^2=0
(x^2+2√3(1-i))(x^2-2√3(1-i))=0
(x+r(icosθ+sinθ))(x-r(icosθ+sinθ))(x+r(cosθ-isinθ))(x-r(cosθ-isinθ))=0
于是得到四个解.其中,r=4√24(四次根号24),θ=π/8,cosθ=√(2+√2)/2,sinθ=√(2-√2)/2.
2) (x+1)^9=(1+i)^9
先分解因式x^9-y^9=(x-y)(x^2+xy+y^2)(x^6+x^3y^3+y^6),然后用前两个式子可以得到三个根
x=i
x=(-3-i+√3(-1+i))/2
x=(-3-i-√3(-1+i))/2
至于剩下六个根繁得出奇,略.
三.巳知复数Z=x+yi(x,y全属于R),求下列各式的实部与虚部:
1) Z^2=(x^2-y^2)+2xyi
2) Z^3=(x^3-3xy^2)+(3x^2y-y^3)i
3) 1/Z=1/(x+yi)=(x-yi)/(x^2+y^2)=x/(x^2+y^2)-yi/(x^2+y^2)
4) V0Z+(M/2π)*1/Z=V0x+V0yi+Mx/2π(x^2+y^2)-Myi/2π(x^2+y^2)
=[V0x+Mx/2π(x^2+y^2)]+[V0y-Myi/2π(x^2+y^2)]i
从以上结果很容易得出实部和虚部.
四.巳知(x+yi)^3=a+bi,这里a,b,x,y全属于R,求证
(a/x)+(b/y)=4(x^-y^2)
证明:由上题可知,(x+yi)^3=(x^3-3xy^2)+(3x^2y-y^3)i,根据复数相等的定义,a=(x^3-3xy^2),b=(3x^2y-y^3).
所以(a/x)+(b/y)
=(x^2-3y^2)+(3x^2-y^2)
=4(x^-y^2).
看了 有关复数的题目一.在复数集C...的网友还看了以下:
第一题x的n加1次方减2x的n减1次方第二题负2x的2n次方加6x的n次方第三题a的n次方减a的n 2020-05-14 …
数学题初二的4(2x+3y)^2-9(2x-3y)^2 (x-y)^4+x(x-y)^3-y(y- 2020-05-16 …
已知81的2x次方÷9的2x次方÷3的2x次方=81,求x的值是七年级下册数学课时训练里面的P11 2020-05-16 …
解方程:30+10(x-6)=30 6x-7=5x+4 4(4x-11)=3(22-2x) 7(2 2020-05-16 …
(1)阅读小明解方程的过程并回答问题.解方程:2x+93=x+2.解:去分母,得2x+9=3(x+ 2020-07-29 …
若关于X的方程3(2X-3)-(K-1)X-1=2(X+2)与方程5(x-1)-2(1-2x=8x 2020-07-31 …
跪求在线数学家帮忙我的数学题真的弄不完了,谢谢1.通分x/2(x+1)和1/x^2-x2.x+1/ 2020-08-02 …
初一下册数学解三元一次方程组题、如题(1)大括号:y=2x-7如题(1)大括号:y=2x-75x+ 2020-08-03 …
解方程:第一题9.6-4x=25.6-9x第二题0.6-0.2x=2.4-0.4x第三题4-1.4( 2020-11-24 …
2x的4次方-8分之1(2x+y)平方-6(2x+y)+925(x+y)平方-9(x-y)平方因式分 2020-12-17 …