早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知数列{an}的首项a1=2/3,a(n+1)=(2an)/(an+1),1证明数列{(1/an)-1}是等比数列;2求数列{n/an}的前n项和.

题目详情
已知数列{an}的首项a1=2/3,a(n+1)=(2an)/(an+1),1证明数列{(1/an)-1}是等比数列;2求数列{n/an}的前n项和.
▼优质解答
答案和解析
1
a(n+1)=(2an)/(an+1)
1/a(n+1)=(an+1)/2an=(1/2)*(1+1/an)
1/a(n+1)-1=(1/2)*(1/an-1)
所以{1/an-1}为等比数列!
2
{1/an-1}为等比数列!
首项为1/a1-1=1/2 公比为1/2
所以:1/an-1=1/2*(1/2)^(n-1)=1/2^n
1/an=1+1/2^n
bn=n/an=n*(1/an)=n*(1+1/2^n)=n+n/2^n
Sn=1+1/2+2+2/2^2+..+n+n/2^n
=1+2+..+n+1/2+2/2^2+...+n/2^n
其中:1+2+...+n=n*(n+1)/2
S=1/2+2/2^2+..+n/2^n
S/2=1/2^2+.+(n-1)/2^n+n/2^(n+1)
相减:S/2=1/2+1/2^2+.+1/2^n-n/2^(n+1)
=1-1/2^n-n/2^(n+1)
S=2-1/2^(n-1)-n/2^n
所以:Sn=1+1/2+2+2/2^2+..+n+n/2^n
=1+2+..+n+1/2+2/2^2+...+n/2^n
=n*(n+1)/2+2-1/2^(n-1)-n/2^n