早教吧作业答案频道 -->数学-->
已知数列{an}的首项a1=2/3,a(n+1)=(2an)/(an+1),1证明数列{(1/an)-1}是等比数列;2求数列{n/an}的前n项和.
题目详情
已知数列{an}的首项a1=2/3,a(n+1)=(2an)/(an+1),1证明数列{(1/an)-1}是等比数列;2求数列{n/an}的前n项和.
▼优质解答
答案和解析
1
a(n+1)=(2an)/(an+1)
1/a(n+1)=(an+1)/2an=(1/2)*(1+1/an)
1/a(n+1)-1=(1/2)*(1/an-1)
所以{1/an-1}为等比数列!
2
{1/an-1}为等比数列!
首项为1/a1-1=1/2 公比为1/2
所以:1/an-1=1/2*(1/2)^(n-1)=1/2^n
1/an=1+1/2^n
bn=n/an=n*(1/an)=n*(1+1/2^n)=n+n/2^n
Sn=1+1/2+2+2/2^2+..+n+n/2^n
=1+2+..+n+1/2+2/2^2+...+n/2^n
其中:1+2+...+n=n*(n+1)/2
S=1/2+2/2^2+..+n/2^n
S/2=1/2^2+.+(n-1)/2^n+n/2^(n+1)
相减:S/2=1/2+1/2^2+.+1/2^n-n/2^(n+1)
=1-1/2^n-n/2^(n+1)
S=2-1/2^(n-1)-n/2^n
所以:Sn=1+1/2+2+2/2^2+..+n+n/2^n
=1+2+..+n+1/2+2/2^2+...+n/2^n
=n*(n+1)/2+2-1/2^(n-1)-n/2^n
a(n+1)=(2an)/(an+1)
1/a(n+1)=(an+1)/2an=(1/2)*(1+1/an)
1/a(n+1)-1=(1/2)*(1/an-1)
所以{1/an-1}为等比数列!
2
{1/an-1}为等比数列!
首项为1/a1-1=1/2 公比为1/2
所以:1/an-1=1/2*(1/2)^(n-1)=1/2^n
1/an=1+1/2^n
bn=n/an=n*(1/an)=n*(1+1/2^n)=n+n/2^n
Sn=1+1/2+2+2/2^2+..+n+n/2^n
=1+2+..+n+1/2+2/2^2+...+n/2^n
其中:1+2+...+n=n*(n+1)/2
S=1/2+2/2^2+..+n/2^n
S/2=1/2^2+.+(n-1)/2^n+n/2^(n+1)
相减:S/2=1/2+1/2^2+.+1/2^n-n/2^(n+1)
=1-1/2^n-n/2^(n+1)
S=2-1/2^(n-1)-n/2^n
所以:Sn=1+1/2+2+2/2^2+..+n+n/2^n
=1+2+..+n+1/2+2/2^2+...+n/2^n
=n*(n+1)/2+2-1/2^(n-1)-n/2^n
看了 已知数列{an}的首项a1=...的网友还看了以下:
已知数列{an}为等比数列,a2=6,a5=162 (1)求数列{an}的通项公式(2)设Sn是数 2020-04-05 …
(1)叙述并证明等比数列的前n项和公式;(2)已知Sn是等比数列{an}的前n项和,S3,S9,S 2020-05-13 …
下列项目中,可以作为登记账簿依据的有()。A.收款凭证B.科目汇总表C.汇总原始凭证下列项目中,可 2020-06-10 …
.凭证按照其填列方式,可16.记账凭证按照其填列方式,可以分为().A.收款凭证、付款凭证和转账凭 2020-06-10 …
已知等比数列an,前n项和为sn,q不为1,s1,s2,s3.sn为等比数列,求证a1,a2,a3 2020-06-29 …
证明一个数列是等差(或等比)数列时,已证得后一项与前一项的差(或比)是同一个常数(等比数列中该常数 2020-07-10 …
数学分析证明:设{an}是由整数组成的数列,求证:数列{an}收敛,当且仅当从某一项起数列的项数学 2020-07-21 …
在数列{an}中,前n项和Sn构成公比为q的等比数列.(1)求证:在数列{an}中,从第二项开始成 2020-07-30 …
已知数列{an}的前N项和为Sna1=1/4Sn=Sn-1+an-1+1/2数列{bn}满足3bn 2020-07-30 …
关于高阶等差数列的的问题.任意一个数列的末项为二次三项式,如何证明它是二阶等差数列?任意一个二阶等 2020-07-31 …