早教吧 育儿知识 作业答案 考试题库 百科 知识分享

在中,,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转得到线段PQ。(1)若且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,请补全图形,并写出∠CDB的度数

题目详情
中, ,M是AC的中点,P是线段BM上的动点,
将线段PA绕点P顺时针旋转 得到线段PQ。
(1) 若 且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,请补全图形,
并写出∠CDB的度数;

(2) 在图2中,点P不与点B,M重合,线段CQ的延长线与射线BM交于点D,猜想∠CDB的大
小(用含 的代数式表示),并加以证明;
(3) 对于适当大小的 ,当点P在线段BM上运动到某一位置(不与点B,M重合)时,能使得
线段CQ的延长线与射线BM交于点D,且PQ=QD,请直接写出 的范围。
▼优质解答
答案和解析
中, ,M是AC的中点,P是线段BM上的动点,
将线段PA绕点P顺时针旋转 得到线段PQ。
(1) 若 且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,请补全图形,
并写出∠CDB的度数;

(2) 在图2中,点P不与点B,M重合,线段CQ的延长线与射线BM交于点D,猜想∠CDB的大
小(用含 的代数式表示),并加以证明;
(3) 对于适当大小的 ,当点P在线段BM上运动到某一位置(不与点B,M重合)时,能使得
线段CQ的延长线与射线BM交于点D,且PQ=QD,请直接写出 的范围。
(1)补全图形如下:

∠CDB=30°。
(2)作线段CQ的延长线交射线BM于点D,连接PC,AD,

∵AB=BC,M是AC的中点,∴BM⊥AC。
∴AD=CD,AP=PC,PD=PD。
在△APD与△CPD中,∵AD=CD, PD=PD, PA=PC
∴△APD≌△CPD(SSS)。
∴AP=PC,∠ADB=∠CDB,∠PAD=∠PCD。
又∵PQ=PA,∴PQ=PC,∠ADC=2∠CDB,∠PQC=∠PCD=∠PAD。
∴∠PAD+∠PQD=∠PQC+∠PQD=180°。
∴∠APQ+∠ADC=360°-(∠PAD+∠PQD)=180°。
∴∠ADC=180°-∠APQ=180°-2α,即2∠CDB=180°-2α。
∴∠CDB=90°-α。
(3)45°<α<60°。

旋转的性质,等边三角形的判定和性质,三角形内角和定理,全等三角形的判定和性质,等腰三角形的判定和性质,。
(1)利用图形旋转的性质以及等边三角形的判定得出△CMQ是等边三角形,即可得出答案:
∵BA=BC,∠BAC=60°,M是AC的中点,∴BM⊥AC,AM=AC。
∵将线段PA绕点P顺时针旋转2α得到线段PQ,∴AM=MQ,∠AMQ=120°。
∴CM=MQ,∠CMQ=60°。∴△CMQ是等边三角形。
∴∠ACQ=60°。∴∠CDB=30°。
(2)首先由已知得出△APD≌△CPD,从而得出∠PAD+∠PQD=∠PQC+∠PQD=180°,即可求出。
(3)由(2)得出∠CDB=90°-α,且PQ=QD,
∴∠PAD=∠PCQ=∠PQC=2∠CDB=180°-2α。
∵点P不与点B,M重合,∴∠BAD>∠PAD>∠MAD。
∴2α>180°-2α>α,∴45°<α<60°。