早教吧作业答案频道 -->数学-->
如图,已知等腰Rt△ABC中,∠ACB=90°,AC=BC=4,D为△ABC的一个外角∠ABF的平分线上一点,且∠ADC=45°,CD交AB于E,(1)求证:AD=CD;(2)求AE的长.
题目详情
如图,已知等腰Rt△ABC中,∠ACB=90°,AC=BC=4,D为△ABC的一个外角∠ABF的平分线上一点,且∠ADC=45°,CD交AB于E,
(1)求证:AD=CD;
(2)求AE的长.
(1)求证:AD=CD;
(2)求AE的长.
▼优质解答
答案和解析
(1)证明:过D点作DM⊥AB,DN⊥CB,垂足分别为M、N,
∴∠AMD=∠CND=90°
∵D为△ABC的一个外角∠ABF的平分线上一点,
∴DM=DN.
∵△ABC是等腰直角三角形,
∴∠BAC=∠CBA=45°.
∵∠ADC=45°,
∴∠ABC=∠ADC,
∵∠AED=∠CEB,
∴∠1=∠2.
在△AMD和△CND中,
,
∴△ADM≌△CDN(AAS),
∴AD=CD;
(2)∵AD=CD,且∠ADC=45°,
∴∠ACD=∠DAC=67.5°,
∴∠1=22.5°.
∵∠AEC=∠1+∠ADC,
∴∠AEC=22.5°+45°=67.5°,
∴∠ACE=∠AEC,
∴AC=AE.
∵AC=4,
∴AE=4.
.答:AE=4.
∴∠AMD=∠CND=90°
∵D为△ABC的一个外角∠ABF的平分线上一点,
∴DM=DN.
∵△ABC是等腰直角三角形,
∴∠BAC=∠CBA=45°.
∵∠ADC=45°,
∴∠ABC=∠ADC,
∵∠AED=∠CEB,
∴∠1=∠2.
在△AMD和△CND中,
|
∴△ADM≌△CDN(AAS),
∴AD=CD;
(2)∵AD=CD,且∠ADC=45°,
∴∠ACD=∠DAC=67.5°,
∴∠1=22.5°.
∵∠AEC=∠1+∠ADC,
∴∠AEC=22.5°+45°=67.5°,
∴∠ACE=∠AEC,
∴AC=AE.
∵AC=4,
∴AE=4.
.答:AE=4.
看了 如图,已知等腰Rt△ABC中...的网友还看了以下:
分母为零无意义,如果分子分母都为零呢a/b可以说是a÷b若b=0,a÷b=c那么cb=ac*0=aa 2020-03-30 …
若a+b=b+c,则a-b(c为整式)若a=b,则ac=bc(c为整式)若ac=bc,则a=b(c 2020-04-22 …
直线L与x轴分别交于A(6,0)、B(0,3)两点,P(x,y)为线段AB(不包含A、B两点)上的 2020-05-13 …
点到直线的距离公式一次函数y=kx+b(k=/=0)的图像是一条直线,它更一般的形式为Ax+Bx+ 2020-05-15 …
X与Y成反比例,Y与Z成反比例,X与Z成正比例还未反比例?由题意,XY=a(a>0),YZ=b(b 2020-05-19 …
已知椭圆E:X2/a2+Y2/b2=1(a>b>0)过点P(1,√2/2),离心率e=√2/2.椭 2020-08-01 …
“a2+b2≠0”的含义为()A.a和b都不为0B.a和b至少有一个为0C.a和b至少有一个不为0D 2020-10-31 …
3角形3边abc求证:abc≥(a+b-c)(a+c-b)(b+c-a)假设x=a+b-c>0y=a 2020-11-01 …
若a,b为有理数,且都不为0,(1)b−a=−ba=−ba;(2)若a+b=0,n为正整数,则a2n 2020-11-11 …
求绿地面积A,B,C为坐落在一条南北走向的公路沿线上的三个汽车站,其中AB、BC的距离分别为3千米和 2020-11-21 …