早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,E是正方形ABCD的BC边上一点,BE的垂直平分线交对角线AC于点P,连接PB,PE,PD,DE.请判断△PED的形状,并证明你的结论.

题目详情
如图,E是正方形ABCD的BC边上一点,BE的垂直平分线交对角线AC于点P,连接PB,PE,PD,DE.请判断△PED的形状,并证明你的结论.
作业帮
▼优质解答
答案和解析
证明:∵四边形ABCD是正方形,
∴BC=CD,∠ACB=∠ACD,
在△PBC和△PDC中,
BC=CD
∠ACB=∠ACD
PC=PC

∴△PBC≌△PDC(SAS),
∴PB=PD,
∵PE=PB,
∴PE=PD,
∵∠BCD=90°,
∵△PBC≌△PDC,
∴∠PBC=∠PDC,
∵PE=PB,
∴∠PBC=∠PEB,
∴∠PDC=∠PEB,
∵∠PEB+∠PEC=180°,
∴∠PDC+∠PEC=180°,
在四边形PECD中,∠EPD=360°-(∠PDC+∠PEC)-∠BCD=360°-180°-90°=90°,
又∵PE=PD,
∴△PDE是等腰直角三角形.