早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③△GDE∽BEF;④S△BEF=725.在以

题目详情
如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③△GDE∽BEF;④S△BEF=
72
5
.在以上4个结论中,其中一定成立的是___(把所有正确结论的序号都填在横线上)
作业帮
▼优质解答
答案和解析
由折叠可知,DF=DC=DA,∠DFE=∠C=90°,
∴∠DFG=∠A=90°,
∴△ADG≌△FDG,①正确;
∵正方形边长是12,
∴BE=EC=EF=6,
设AG=FG=x,则EG=x+6,BG=12-x,
由勾股定理得:EG2=BE2+BG2
即:(x+6)2=62+(12-x)2
解得:x=4
∴AG=GF=4,BG=8,BG=2AG,②正确;
BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,③错误;
S△GBE=
1
2
×6×8=24,S△BEF=
EF
EG
•S△GBE=
6
10
×24=
72
5
,④正确;
故答案为:①,②,④.