早教吧 育儿知识 作业答案 考试题库 百科 知识分享

求过抛物线外一点M(x0,y0)做两条斜线,求切点弦所在的方程?在抛物线上的点(x1,y1)的切线方程y1y=p(x+x1),(x2,y2)上切线方程y2y=p(x2+x)相减y(y1-y2)=p(x1-x2)所以y1-y2/(x1-x2)=p/y0.又因为y1^2=2px1,y2^2=2px2相减得

题目详情
求过抛物线外一点M(x0,y0)做两条斜线,求切点弦所在的方程?在抛物线上的点(x1,y1)的切线方程y1y=p(x+x1),(x2,y2)上切线方程y2y=p(x2+x)相减y(y1-y2)=p(x1-x2)所以y1-y2/(x1-x2)=p/y0 .又因为y1^2=2px1,y2^2=2px2相减得2p(x1-x2)=(y1-y2)(y1+y2)所以y1-y2/(x1-x2)=2p/(y1+y2)所以y0=(y1+y2)/2 这个答案好像不可能 怎么办
▼优质解答
答案和解析
对于抛物线y^2=2px来说,过抛物线上的点A(x1,y1)、B(x2,y2)的切线方程分别是:
y1y=p(x+x1)、y2y=p(x+x2).
∵点M(x0,y0)在y1y=p(x+x1)上,∴y1y0=p(x0+x1).······①
∵点M(x0,y0)在y2y=p(x+x2)上,∴y2y0=p(x0+x2).······②
由①、②可知:点A(x1,y1)、B(x2,y2)均在直线y0y=p(x+x0)上,
∴AB的方程是:y0y=p(x+x0).
∴过抛物线y^2=2px外一点M(x0,y0)作它的两条切线,切点弦的方程是:y0y=p(x+x0).