早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,⊙O是△ABC的外接圆,BC为⊙O的直径,点E为△ABC的内心,连接AE并延长交⊙O于D点,连接BD并延长至F,使得BD=DF,连接CF、BE.(1)求证:DB=DE;(2)求证:直线CF为⊙O的切线.

题目详情
如图,⊙O是△ABC的外接圆,BC为⊙O的直径,点E为△ABC的内心,连接AE并延长交⊙O于D点,连接BD并延长至F,使得BD=DF,连接CF、BE.
作业帮
(1)求证:DB=DE;
(2)求证:直线CF为⊙O的切线.
▼优质解答
答案和解析
(1)证明:∵E是△ABC的内心,
∴∠BAE=∠CAE,∠EBA=∠EBC,
∵∠BED=∠BAE+∠EBA,∠DBE=∠EBC+∠DBC,∠DBC=∠EAC,
∴∠DBE=∠DEB,
∴DB=DE.作业帮

(2)连接CD.
∵DA平分∠BAC,
∴∠DAB=∠DAC,
BD
=
CD

∴BD=CD,
∵BD=DF,
∴CD=DB=DF,
∴∠BCF=90°,
∴BC⊥CF,
∴CF是⊙O的切线.