早教吧 育儿知识 作业答案 考试题库 百科 知识分享

求圆锥曲线全部定理和性质.RT.圆锥曲线指(椭圆,双曲线,抛物线)

题目详情
求圆锥曲线全部定理和性质.
RT.圆锥曲线指(椭圆,双曲线,抛物线)
▼优质解答
答案和解析
1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆.即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|)}.
  2. 双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线.即{P|||PF1|-|PF2||=2a, (2a  3. 抛物线:到一个定点和一条定直线的距离相等的动点轨迹叫做抛物线.
性质:1)椭圆
  参数方程:X=acosθ Y=bsinθ (θ为参数 )
  直角坐标(中心为原点):x^2/a^2 + y^2/b^2 = 1
  2)双曲线
  参数方程:x=asecθ y=btanθ (θ为参数 )
  直角坐标(中心为原点):x^2/a^2 - y^2/b^2 = 1 (开口方向为x轴) y^2/a^2 - x^2/b^2 = 1 (开口方向为y轴)
  3)抛物线
  参数方程:x=2pt^2 y=2pt (t为参数)
  直角坐标:y=ax^2+bx+c (开口方向为y轴, a<>0 ) x=ay^2+by+c (开口方向为x轴, a<>0 )
  圆锥曲线(二次非圆曲线)的统一极坐标方程为
  ρ=ep/(1-e×cosθ)
  其中e表示离心率,p为焦点到准线的距离.
  焦点到最近的准线的距离等于ex±a
  圆锥曲线的焦半径(焦点在x轴上,F1 F2为左右焦点,P(x,y),长半轴长为a)
  椭圆:椭圆上任一点和焦点的连线段的长称为焦半径.
  |PF1|=a+ex |PF2|=a-ex
  双曲线:
  P在左支,|PF1|=-a-ex |PF2|=a-ex
  P在右支,|PF1|=a+ex |PF2|=-a+ex
  P在下支,|PF1|= -a-ey |PF2|=a-ey
  P在上支,|PF1|= a+ey |PF2|=-a+ey
  圆锥曲线的切线方程:圆锥曲线上一点P(x0,y0)的切线方程以x0x代替x^2,以y0y代替y^2;以(x0+x)/2代替x,以(y0+y)/2代替y^2
  即椭圆:x0x/a^2+y0y/b^2=1;双曲线:x0x/a^2-y0y/b^2=1;抛物线:y0y=p(x0+x)
  圆锥曲线中求点的轨迹方程
  在求曲线的轨迹方程时,如果能够将题设条件转化为具有某种动感的直观图形,通过观察图形的变化过程,发现其内在联系,找出哪些是变化的量(或关系)、哪些是始终保持不变的量(或关系),那么我们就可以从找出的不变量(或关系)出发,打开解题思路,确定解题方法.
看了 求圆锥曲线全部定理和性质.R...的网友还看了以下: