早教吧作业答案频道 -->数学-->
(2014•安顺)如图,已知AB是⊙O的直径,BC是⊙O的弦,弦ED⊥AB于点F,交BC于点G,过点C的直线与ED的延长线交于点P,PC=PG.(1)求证:PC是⊙O的切线;(2)当点C在劣弧AD上运动时,其他条
题目详情
(2014•安顺)如图,已知AB是⊙O的直径,BC是⊙O的弦,弦ED⊥AB于点F,交BC于点G,过点C的直线与ED的延长线交于点P,PC=PG.
(1)求证:PC是⊙O的切线;
(2)当点C在劣弧AD上运动时,其他条件不变,若BG2=BF•BO.求证:点G是BC的中点;
(3)在满足(2)的条件下,AB=10,ED=4
,求BG的长.
(1)求证:PC是⊙O的切线;
(2)当点C在劣弧AD上运动时,其他条件不变,若BG2=BF•BO.求证:点G是BC的中点;
(3)在满足(2)的条件下,AB=10,ED=4
6 |
▼优质解答
答案和解析
(1)证明:连OC,如图,
∵ED⊥AB,
∴∠FBG+∠FGB=90°,
又∵PC=PG,
∴∠1=∠2,
而∠2=∠FGB,∠4=∠FBG,
∴∠1+∠4=90°,即OC⊥PC,
∴PC是⊙O的切线;
(2)证明:连OG,如图,
∵BG2=BF•BO,即BG:BO=BF:BG,
而∠FBG=∠GBO,
∴△BGO∽△BFG,
∴∠OGB=∠BFG=90°,
即OG⊥BG,
∴BG=CG,即点G是BC的中点;
(3)连OE,如图,
∵ED⊥AB,
∴FE=FD,
而AB=10,ED=4
,
∴EF=2
,OE=5,
在Rt△OEF中,OF=
=
=1,
∴BF=5-1=4,
∵BG2=BF•BO,
∴BG2=BF•BO=4×5,
∴BG=2
.
∵ED⊥AB,
∴∠FBG+∠FGB=90°,
又∵PC=PG,
∴∠1=∠2,
而∠2=∠FGB,∠4=∠FBG,
∴∠1+∠4=90°,即OC⊥PC,
∴PC是⊙O的切线;
(2)证明:连OG,如图,
∵BG2=BF•BO,即BG:BO=BF:BG,
而∠FBG=∠GBO,
∴△BGO∽△BFG,
∴∠OGB=∠BFG=90°,
即OG⊥BG,
∴BG=CG,即点G是BC的中点;
(3)连OE,如图,
∵ED⊥AB,
∴FE=FD,
而AB=10,ED=4
6 |
∴EF=2
6 |
在Rt△OEF中,OF=
OE2−EF2 |
52−(2
|
∴BF=5-1=4,
∵BG2=BF•BO,
∴BG2=BF•BO=4×5,
∴BG=2
5 |
看了 (2014•安顺)如图,已知...的网友还看了以下:
超难初中几何题已知:圆O,PA,PB分别切圆O于AB两点,在劣弧AB上任意一点C,过C做圆O的切线交 2020-03-30 …
下列句子中划线的成语运用不恰当的一项是()A.“将一根稻草讲成金条”一句用了夸张手法,突出地表现了 2020-04-09 …
如图,AB是圆O的直径,CD切圆O于点C,AD交于圆O点E,当AC满足什么条件时,AD垂直于CD, 2020-05-15 …
已知等边三角形ABC内接于⊙O,P为⊙O上异于A、B、C的动点.当点P为弦BC所对的劣弧上一点时( 2020-06-23 …
如图,⊙O的半径为2,AB、CD是互相垂直的两条直径,点P是⊙O任意一点,过点P作PM⊥AB于M, 2020-07-26 …
椭圆.园O的半径为定长r,A是圆O内一个定点,P是圆上任意一点,线段AP的垂直平分线l和半径OP相 2020-07-30 …
如图,圆心在原点,半径为2的圆内有一点P(22,22),过点P作弦AB与劣弧AB组成一个弓形,则该 2020-07-31 …
“藏独”势力的暴力犯罪事件,破坏奥运圣火传递等卑劣行径激起了广大人民群众的强烈愤慨,激发了中国人民的 2020-11-26 …
当前,邪教披着传统宗教的外衣,大肆行着控制信徒、残害生灵的卑劣行径。地点不同,时代不同,教义不同,但 2020-11-26 …
“藏独”势力的暴力犯罪事件,破坏奥运圣火传递等卑劣行径激起了广大人民群众的强烈愤慨,激发了中国人民的 2020-12-28 …