早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知函数f(x)=x3-3x及曲线y=f(x)上一点P(1,-2),(I)求与y=f(x)相切且以P为切点的直线方程;(Ⅱ)求过点P并与y=f(x)相切且切点异于P点的直线方程.

题目详情
已知函数f(x)=x3-3x及曲线y=f(x)上一点P(1,-2),
(I) 求与y=f(x)相切且以P为切点的直线方程;
(Ⅱ)求过点P并与y=f(x)相切且切点异于P点的直线方程.
▼优质解答
答案和解析
(I) 函数f(x)=x3-3x的导数为f′(x)=3x2-3,
点P(1,-2)处的切线斜率为3-3=0,
则与y=f(x)相切且以P为切点的直线方程为y=-2;
(Ⅱ)设切点为(m,n)(异于P点),
且n=m3-3m,
可得切线的斜率为3m2-3,
切线的方程为y-n=(3m2-3)(x-m),
点P(1,-2)代入上式,可得
-2-m3+3m=(3m2-3)(1-m),
整理可得2m3-3m2+1=0,
即为(m-1)2(2m+1)=0,
解得m=-
1
2
(1舍去),
可得切线的斜率为-
9
4

则所求切线的方程为y+2=-
9
4
(x-1),
即为9x+4y-1=0.