早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2014•仙桃)如图,已知BC是以AB为直径的⊙的切线,且BC=AB,连接OC交⊙O于点D,延长AD交BC于点E,F为BE上一点,且DF=FB.(1)求证:DF是⊙O的切线;(2)若BE=2,求⊙O的半径.

题目详情
(2014•仙桃)如图,已知BC是以AB为直径的⊙的切线,且BC=AB,连接OC交⊙O于点D,延长AD交BC于点E,F为BE上一点,且DF=FB.
(1)求证:DF是⊙O的切线;
(2)若BE=2,求⊙O的半径.
▼优质解答
答案和解析
(1)证明:连接BD,
∵BC是⊙O的切线,AB是直径,
∴AB⊥BC,
∴∠FBD+∠OBD=90°,
∵DF=FB,
∴∠FDB=∠FBD,
∵OD=OB,
∴∠ODB=∠OBD,
∴∠FDB+∠ODB=∠FBD+∠OBD=90°,
∴OD⊥DF,
∴DF是圆的切线;

(2)∵AB是圆的直径,
∴∠ADB=90°,∠FDB+∠FDE=∠FBD+∠FED=90°,
∵∠FDB=∠FBD,
∴∠FDE=∠FED,
∴FD=FE=FB,
在直角△OBC中,tanC=
OB
BC
=
OB
2OB
=
1
2

在直角△CDF中,tanC=
DF
CD

DF
CD
=
1
2

∵DF=1,
∴CD=2,
在直角△CDF中,由勾股定理可得:CF=
5

∴OB=
1
2
BC=
5
+1
2

∴⊙O的半径是
5
+1
2