早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知函数f(x)=lnx,g(x)=(x-a)2+(lnx-a)2.(Ⅰ)求函数f(x)在A(1,0)处的切线方程;(Ⅱ)若g′(x)在[1,+∞)上单调递增,求实数a的取值范围;(Ⅲ)证明:g(x)≥12.

题目详情
已知函数f(x)=lnx,g(x)=(x-a)2+(lnx-a)2
(Ⅰ)求函数f(x)在A(1,0)处的切线方程;
(Ⅱ)若g′(x)在[1,+∞)上单调递增,求实数a的取值范围;
(Ⅲ)证明:g(x)≥
1
2
▼优质解答
答案和解析
(Ⅰ)∵f(x)=lnx,
∴f′(x)=
1
x
,…(1分)
∴f′(1)=1,…(2分)
故切线方程为y=x-1;…(4分)
(Ⅱ)∵g(x)=(x-a)2+(lnx-a)2
∴g′(x)=2(x-
a
x
+
lnx
x
-a),…(5分)
令F(x)=x-
a
x
+
lnx
x
-a,则y=F(x)在[1,+∞)上单调递增.
F′(x)=
x2-lnx+a+1
x2
,则当x≥1时,x2-lnx+a+1≥0恒成立,
即当x≥1时,a≥-x2+lnx-1恒成立.…(6分)
令G(x)=-x2+lnx-1,则当x≥1时,G′(x)=
1-2x2
x
<0,
故G(x)=-x2+lnx-1在[1,+∞)上单调递减,从而G(x)max=G(1)=-2,(7分)
故a≥-2.…(8分)
(Ⅲ)证明:g(x)=(x-a)2+(lnx-a)2=2a2-2(x+lnx)a+x2+ln2x,
令h(a)=2a2-2(x+lnx)a+x2+ln2x,则h(a)≥
(x-lnx)2
2
.…(9分)
令Q(x)=x-lnx,则Q′(x)=
x-1
x
,显然Q(x)=在(0,1)上单调递减,在(1,+∞)上单调递增,…(10分)
则Q(x)min=Q(1)=1,…(11分)
则g(x)=h(a)≥
1
2
.…(12分)