早教吧作业答案频道 -->其他-->
如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.
题目详情
如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:
(Ⅰ)BE=EC;
(Ⅱ)AD•DE=2PB2.
(Ⅰ)BE=EC;
(Ⅱ)AD•DE=2PB2.
▼优质解答
答案和解析
证明:(Ⅰ)连接OE,OA,则∠OAE=∠OEA,∠OAP=90°,
∵PC=2PA,D为PC的中点,
∴PA=PD,
∴∠PAD=∠PDA,
∵∠PDA=∠CDE,
∴∠OEA+∠CDE=∠OAE+∠PAD=90°,
∴OE⊥BC,
∴E是
的中点,
∴BE=EC;
(Ⅱ)∵PA是切线,A为切点,割线PBC与⊙O相交于点B,C,
∴PA2=PB•PC,
∵PC=2PA,
∴PA=2PB,
∴PD=2PB,
∴PB=BD,
∴BD•DC=PB•2PB,
∵AD•DE=BD•DC,
∴AD•DE=2PB2.
∵PC=2PA,D为PC的中点,
∴PA=PD,
∴∠PAD=∠PDA,
∵∠PDA=∠CDE,
∴∠OEA+∠CDE=∠OAE+∠PAD=90°,
∴OE⊥BC,
∴E是
BC |
∴BE=EC;
(Ⅱ)∵PA是切线,A为切点,割线PBC与⊙O相交于点B,C,
∴PA2=PB•PC,
∵PC=2PA,
∴PA=2PB,
∴PD=2PB,
∴PB=BD,
∴BD•DC=PB•2PB,
∵AD•DE=BD•DC,
∴AD•DE=2PB2.
看了 如图,P是⊙O外一点,PA是...的网友还看了以下:
若a+b=b+c,则a-b(c为整式)若a=b,则ac=bc(c为整式)若ac=bc,则a=b(c 2020-04-22 …
分解因式(a-b-c)(a+b-c)-(b-c-a)(b+c-a)正确答案是这个:(a+b-c)( 2020-05-17 …
第一题令A={a,b,c,d,e},B={a,b,c,d,e,f,g,h}.求a)A∪Bb)A∩B 2020-06-17 …
下列能判定△ABC≌△A′B′C′的是()A.AB=A′B′,BC=B′C′,∠C=∠C′B.∠B 2020-07-14 …
(2013•嘉兴模拟)已知函数f(x)=x2+bx+c,(b,c∈R),集合A={x丨f(x)=0 2020-07-26 …
利用(a+b+c)^2=a^2+b^2^c^2+2ab+2ac+abc,推导(a+b+c)^2+a 2020-07-30 …
aW、bX、cC、dZ、eR是五种短周期元素,e-d=d-c=c-b=b-a=4,其中一种是常见金属 2020-11-26 …
已知a+b+c=0,abc不等于0,且a,b,c,互不相等,求证:[(b-c)/a+(c-a)/b+ 2020-12-01 …
判断下列命题的真假已知a,b,c,d∈R(1)若ac>bc,则a>b(2)若a>-b,则c-ab>c 2020-12-13 …
下列各式中与a-b-c的值不相等的是().A.a-(+b)-(-c)B.a-(+b)-(+c)C.a 2021-01-22 …