早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.

题目详情
如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:
(Ⅰ)BE=EC;
(Ⅱ)AD•DE=2PB2
▼优质解答
答案和解析
证明:(Ⅰ)连接OE,OA,则∠OAE=∠OEA,∠OAP=90°,
∵PC=2PA,D为PC的中点,
∴PA=PD,
∴∠PAD=∠PDA,
∵∠PDA=∠CDE,
∴∠OEA+∠CDE=∠OAE+∠PAD=90°,
∴OE⊥BC,
∴E是
BC
的中点,
∴BE=EC;
(Ⅱ)∵PA是切线,A为切点,割线PBC与⊙O相交于点B,C,
∴PA2=PB•PC,
∵PC=2PA,
∴PA=2PB,
∴PD=2PB,
∴PB=BD,
∴BD•DC=PB•2PB,
∵AD•DE=BD•DC,
∴AD•DE=2PB2