早教吧作业答案频道 -->其他-->
(2004•沈阳)如图,⊙O1和⊙O2外切于点A,BC是⊙O1和⊙O2的公切线,B、C为切点.(1)求证:AB⊥AC;(2)过点A的直线分别交⊙O1、⊙O2于点D、E,且DE是连心线时,直线DB与直线EC交于点F.请
题目详情
(2004•沈阳)如图,⊙O1和⊙O2外切于点A,BC是⊙O1和⊙O2的公切线,B、C为切点.
(1)求证:AB⊥AC;
(2)过点A的直线分别交⊙O1、⊙O2于点D、E,且DE是连心线时,直线DB与直线EC交于点F.请在图中画出图形,并判断DF与EF是否互相垂直,请证明;若不垂直,请说明理由;
(3)在(2)的其他条件不变的情况下,将直线DE绕点A旋转(DE不与点A、B、C重合),请另画出图形,并判断DF与EF是否互相垂直?若垂直,请证明;若不垂直,请说明理由.
(1)求证:AB⊥AC;
(2)过点A的直线分别交⊙O1、⊙O2于点D、E,且DE是连心线时,直线DB与直线EC交于点F.请在图中画出图形,并判断DF与EF是否互相垂直,请证明;若不垂直,请说明理由;
(3)在(2)的其他条件不变的情况下,将直线DE绕点A旋转(DE不与点A、B、C重合),请另画出图形,并判断DF与EF是否互相垂直?若垂直,请证明;若不垂直,请说明理由.
▼优质解答
答案和解析
(1)证明:如图1,过点A作⊙O1和⊙O2的内公切线交BC于点O,
∵OB、OA是⊙O1的切线,
∴OB=OA.
同理OC=OA.
∴OB=OC=OA.
∴△ABC是直角三角形.
∴AB⊥AC.
(2)DF⊥EF.理由如下:
如图1,∵⊙O1和⊙O2外切于点A,
∴∠ABC=∠FDA,∠ACB=∠FEA,
由(1)得∠ABC+∠ACB=90°,
∴∠FDA+∠FEA=90°,
∴∠DFE=90°,即DF⊥EF;
(3)DF⊥EF.理由如下:
第一种情况:如图2,
∵⊙O1和⊙O2外切于点A,
∴∠ABC=∠FDA,∠ACB=∠FEA.
由(1)得∠ABC+∠ACB=90°,
∴∠FDA+∠FEA=90°.
∴∠DFE=90°,即DF⊥EF.
第二种情况:如图3,
∵∠ACB=∠FEA,∠CBD=∠BAD,∠EDF=∠DBA+∠DAB,
∴∠EDF=∠ABC.
∵∠ABC+∠ACB=90°,
∴∠EDF+∠AEC=90°.
∴∠DFE=90°,即EF⊥DF.
∵OB、OA是⊙O1的切线,
∴OB=OA.
同理OC=OA.
∴OB=OC=OA.
∴△ABC是直角三角形.
∴AB⊥AC.
(2)DF⊥EF.理由如下:
如图1,∵⊙O1和⊙O2外切于点A,
∴∠ABC=∠FDA,∠ACB=∠FEA,
由(1)得∠ABC+∠ACB=90°,
∴∠FDA+∠FEA=90°,
∴∠DFE=90°,即DF⊥EF;
(3)DF⊥EF.理由如下:
第一种情况:如图2,
∵⊙O1和⊙O2外切于点A,
∴∠ABC=∠FDA,∠ACB=∠FEA.
由(1)得∠ABC+∠ACB=90°,
∴∠FDA+∠FEA=90°.
∴∠DFE=90°,即DF⊥EF.
第二种情况:如图3,
∵∠ACB=∠FEA,∠CBD=∠BAD,∠EDF=∠DBA+∠DAB,
∴∠EDF=∠ABC.
∵∠ABC+∠ACB=90°,
∴∠EDF+∠AEC=90°.
∴∠DFE=90°,即EF⊥DF.
看了 (2004•沈阳)如图,⊙O...的网友还看了以下:
main(){unionEXAMPLE{struct{intx,y;}in;inta,b;}e;e 2020-06-12 …
(1)如图①∵∠B+∠D+∠1=180°又∵∠1=∠A+∠2∠2=∠C+∠E∴∠A+∠C+∠E+∠ 2020-06-13 …
请教一线性代数题,这题应该选哪个?设A与B是两个相似n阶矩阵,则下列说法错误的是A.|A|=|B| 2020-06-18 …
请教排列组合题:五张卡片上分别写上字母,E,E,B,B,B,将五张卡片随机地排成一行...五张卡片 2020-06-22 …
如图是膝跳反射的示意图,请根据你所知道的回答第21~23小题:该反射的神经传导通路的顺序是()A. 2020-06-28 …
如图是膝跳反射的示意图,请根据你所知道的回答第37~40小题:该反射的神经传导通路的顺序是()A. 2020-06-28 …
一个关于第几范式的问题有关系模式R(U,F),属性集合U={A,B,C,D,E},函数依赖集合F= 2020-07-01 …
读东北三省雪期始期、终期和雪厚的分布图,回答6〜8题。6.齐齐哈尔、漠河和沈阳的雪期由长到短的排序 2020-07-07 …
绕弯的题,我被绕晕了,求函数有七组数据,ABCDEFG,已知A,B,C,七组数据的关系D+E=B,F 2020-11-11 …
线性代数,矩阵计算问题2CA-2AB=C-B故有C(2A-E)=(2A-E)B请问为什么不是C(2A 2020-12-31 …