早教吧作业答案频道 -->其他-->
如图,△ABC的内切圆I分别切BC、AC于点M、N,点E、F分别为边AB、AC的中点,D是直线EF与BI的交点.证明:M、N、D三点共线.
题目详情
如图,△ABC的内切圆I分别切BC、AC于点M、N,点E、F分别为边AB、AC的中点,D是直线EF与BI的交点.证明:M、N、D三点共线.
▼优质解答
答案和解析
证明:连接AD,IA,IC,IM,IN,连结MD交AC于G,连结IG,如图,
∵点E、F分别为边AB、AC的中点,
∴EF∥BC,
∴∠2=∠3,
∵⊙I为△ABC的内切圆,
∴∠1=∠2,
∴∠1=∠3,
∴EB=ED,
∴AE=BE=ED,
∴△ABD为直角三角形,
∴∠ADB=90°,
∵IM⊥BC,
而∠1=∠2,
∴Rt△BAD∽Rt△BIM,
∴
=
,
∴
=
,
∴△BAI∽△BDM,
∴∠AIB=∠DMB,
∵点I为△ABC的内心,
∴∠AIB=90°+
∠ACB,
∴∠DMB=90°+
∠ACB,
∵∠DMB=∠BMI+∠4=90°+∠4,
∴∠4=
∠ACB,
∵⊙I为△ABC的内切圆,
∴∠5=∠ICM=
∠ACB,
∴∠4=∠5,
∴I、M、C、G四点共圆,
∵∠IMC=90°,
∴∠IGC=90°,
∴IG⊥AC,
∴N点与G点重合,
∴M、N、D三点共线.
∵点E、F分别为边AB、AC的中点,
∴EF∥BC,
∴∠2=∠3,
∵⊙I为△ABC的内切圆,
∴∠1=∠2,
∴∠1=∠3,
∴EB=ED,
∴AE=BE=ED,
∴△ABD为直角三角形,
∴∠ADB=90°,
∵IM⊥BC,
而∠1=∠2,
∴Rt△BAD∽Rt△BIM,
∴
AB |
BI |
BD |
BM |
∴
AB |
BD |
BI |
BM |
∴△BAI∽△BDM,
∴∠AIB=∠DMB,
∵点I为△ABC的内心,
∴∠AIB=90°+
1 |
2 |
∴∠DMB=90°+
1 |
2 |
∵∠DMB=∠BMI+∠4=90°+∠4,
∴∠4=
1 |
2 |
∵⊙I为△ABC的内切圆,
∴∠5=∠ICM=
1 |
2 |
∴∠4=∠5,
∴I、M、C、G四点共圆,
∵∠IMC=90°,
∴∠IGC=90°,
∴IG⊥AC,
∴N点与G点重合,
∴M、N、D三点共线.
看了 如图,△ABC的内切圆I分别...的网友还看了以下:
直线y=-43x+n交x轴于点A,交y轴于点C(0,4),抛物线y=23x2+bx+c经过点A,交 2020-06-14 …
在平面直角坐标系中,直线L1:y=2x+b交x轴正半轴于点A,点B(4,0)在点A的右边,现过点B 2020-06-14 …
如图,在平面直角坐标系中,直线AB:y=kx+1(k≠0)交y轴于点A,交x轴于点B(3,0),平 2020-06-23 …
已知:直线y=-2x+4交x轴于点A,交y轴于点B,点C为x轴上一点,AC=1,且OC<OA.抛物 2020-07-13 …
(2010•武汉模拟)如图1,已知直线y=25x+2与x轴交于点A,交y轴于C、抛物线y=ax2+ 2020-07-22 …
如图,直线x=﹣4与x轴交于点E,一开口向上的抛物线过原点交线段OE于点A,交直线x=﹣4于点B, 2020-07-24 …
(2014•深圳)如图,直线AB的解析式为y=2x+4,交x轴于点A,交y轴于点B,以A为顶点的抛 2020-07-26 …
(2013•无锡)如图,直线x=-4与x轴交于点E,一开口向上的抛物线过原点交线段OE于点A,交直 2020-07-29 …
设抛物线C:x^2=2py,过焦点F的直线L交抛物线于点A,B,交准线于点E,过焦点F与L垂直的直 2020-07-31 …
如图,直线y=3x+m交x轴于点A,交y轴于点B(0,3),过A、B两点的抛物线交x轴于另一点C(3 2020-11-04 …