早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知ab为过抛物线yy=2px(p>0)焦点f的弦,点c在抛物线的准线上,且bc∥x轴,求证;ac经过原点

题目详情
已知ab为过抛物线yy=2px(p>0)焦点f的弦,点c在抛物线的准线上,且bc∥x轴,求证;ac经过原点
▼优质解答
答案和解析
设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准线上,且BC‖x轴.证明直线AC经过原点O.
分析:我们把线段FA、FB、OA、OC看做平面向量,由 与 共线推出 与 共线,即可说明直线AC经过原点O.
设A(x1,y1),B(x2,y2),则y12=2px1,记为①
y22=2px2,记为②
焦点F=( ,0),准线方程x=- ,因为点C在抛物线的准线上,且BC‖x轴,则有C=(- ,y2).
=(x1- ,y1), =(x2- ,y2), =(x1,y1), =(- ,y2),因为 与 共线,
所以(x1- )y2-(x2- )y1=0.③
联立①、②、③式可解得:y1y2=-p2.④
而x1y2-(- )y1= y2+ y1,⑤
将④式代入⑤式有x1y2-(- )y1=0,
所以 与 是共线向量,A、O、C三点共线即直线AC经过原点O.