早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知曲线C1的参数方程为x=2t-1y=-4t-2(t为参数),以原点O为极点,以x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=21-cosθ.(I)求曲线C2的直角坐标系方程;(II)设M1是曲线C1

题目详情
已知曲线C1的参数方程为
x=2t-1
y=-4t-2
(t为参数),以原点O为极点,以x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=
2
1-cosθ

( I)求曲线C2的直角坐标系方程;
( II)设M1是曲线C1上的点,M2是曲线C2上的点,求|M1M2|的最小值.
▼优质解答
答案和解析
(I)由ρ=
2
1-cosθ
可得ρ=x-2,∴ρ2=(x-2)2,即y2=4(x-1);
(Ⅱ)曲线C1的参数方程为
x=2t-1
y=-4t-2
(t为参数),消去t得:2x+y+4=0.
∴曲线C1的直角坐标方程为2x+y+4=0.
∵M1是曲线C1上的点,M2是曲线C2上的点,
∴|M1M2|的最小值等于M2到直线2x+y+4=0的距离的最小值.
设M2(r2-1,2r),M2到直线2x+y+4=0的距离为d,
则d=
2|r2+r+1|
5
=
2[(r+
1
2
)2+
3
4
]
5
3
5
10

∴|M1M2|的最小值为
3
5
10
看了 已知曲线C1的参数方程为x=...的网友还看了以下: