早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,E、F分别为A1C1、BC的中点.(1)求证:AB⊥平面B1BCC1;(2)求证:C1F∥平面ABE.

题目详情
如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,E、F分别为A1C1、BC的中点.
(1)求证:AB⊥平面B1BCC1
(2)求证:C1F∥平面ABE.
▼优质解答
答案和解析
(1)证明:在三棱柱ABC-A1B1C1中,侧棱BB1垂直于底面ABC,
所以BB1⊥AB,又AB⊥BC,BB1∩BC=B,
则有AB⊥平面B1BCC1
(2)证法一、取AB中点G,连接EG,FG,
由于E、F分别为A1C1、BC的中点,所以FG∥AC,FG=
1
2
AC,
因为AC∥A1C1,且AC=A1C1,所以FG∥EC1,且FG=EC1
所以四边形FGEC1为平行四边形,所以C1F∥EG,
又因为EG⊂平面ABE,C1F⊄平面ABE,
所以C1F∥平面ABE;
证法二、取AC中点H,连接FH和C1H,
因为F,H分别是BC,AC的中点,
所以HF∥AB,HF⊄平面ABE,AB⊂ABE,
所以HF∥平面ABE,
又由AE∥C1H,也可得到C1H∥平面ABE,
又C1H∩HF=H,所以平面C1HF∥平面ABE,
因为C1F⊂平面C1HF,所以C1F∥平面ABE.