早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2013•广东)如图1,在边长为1的等边三角形ABC中,D,E分别是AB,AC边上的点,AD=AE,F是BC的中点,AF与DE交于点G,将△ABF沿AF折起,得到如图2所示的三棱锥A-BCF,其中BC=22.(1)证明:DE∥

题目详情
(2013•广东)如图1,在边长为1的等边三角形ABC中,D,E分别是AB,AC边上的点,AD=AE,F是BC的中点,AF与DE交于点G,将△ABF沿AF折起,得到如图2所示的三棱锥A-BCF,其中BC=
2
2

(1)证明:DE∥平面BCF;
(2)证明:CF⊥平面ABF;
(3)当AD=
2
3
时,求三棱锥F-DEG的体积VF-DEG
▼优质解答
答案和解析
(1)在等边三角形ABC中,AD=AE,∴
AD
DB
AE
EC
,在折叠后的三棱锥A-BCF中也成立,
∴DE∥BC.
又∵DE⊄平面BCF,BC⊂平面BCF,
∴DE∥平面BCF.
(2)在等边三角形ABC中,F是BC的中点,所以AF⊥BC,即AF⊥CF ①,且BF=CF=
1
2

∵在三棱锥A-BCF中,BC=
2
2
,∴BC2=BF2+CF2,∴CF⊥BF②.
又∵BF∩AF=F,∴CF⊥平面ABF.
(3)由(1)可知GE∥CF,结合(2)可得GE⊥平面DFG.
VF−DEG=VE−DFG=
1
3
1
2
•DG•FG•GE=
1
3
1
2
1
3
•(
1
3
3
2
)•
1
3
3
324