早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(本题满分10分)已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,底面ABCD,且PA=AD=DC=AB=1,M是PB的中点。(Ⅰ)证明:面PAD⊥面PCD;(Ⅱ)求AC与PB所成的角的余弦值;(Ⅲ)求面AMC与面BMC

题目详情
(本题满分10分)已知四棱锥P-ABCD的底面为直角梯形,AB∥DC, 底面ABCD,且PA=AD=DC= AB=1,M是PB的中点。(Ⅰ)证明:面PAD⊥面PCD;(Ⅱ)求AC与PB所成的角的余弦值;(Ⅲ)求面AMC与面BMC所成二面角的余弦值。
▼优质解答
答案和解析
(2)

:因为PA⊥PD,PA⊥AB,AD⊥AB,以A为坐标原点AD长为单位长度,如图建立空间直角坐标系,则各点坐标为A(0,0,0)B(0,2,0),C(1,1,0),D(1,0,0),P(0,0,1),
M(0,1, .


 
(Ⅰ)证明:因

由题设知AD⊥DC,且AP与AD是平面PAD内的两
条相交直线,由此得DC⊥面PAD.
又DC在面PCD上,故面PAD⊥面PCD.       3分
(Ⅱ)因
6分
(Ⅲ)在MC上取一点N( x y z ),则存在 使

要使                      8分
为所求二面角的平面角.

10分