早教吧作业答案频道 -->数学-->
f(x)在点x=o的某一邻域内具有连续的二阶导数lim(x->0)f(x)/x=0f(x)在点x=o的某一邻域内具有连续的二阶导数lim(x->0)f(x)/x=0,则:f(0)=f'(0)=0则:lim(x->0)f(x)/x^2=lim(x->0)f'(x)/2x=0问题是:为什么lim(x->0)f
题目详情
f(x)在点x=o的某一邻域内具有连续的二阶导数 lim(x->0)f(x)/x=0
f(x)在点x=o的某一邻域内具有连续的二阶导数
lim(x->0)f(x)/x=0,则:
f(0)=f'(0)=0
则:lim(x->0)f(x)/x^2=lim(x->0)f'(x)/2x=0
问题是:为什么lim(x->0)f'(x)/2x=0 ?
f(x)在点x=o的某一邻域内具有连续的二阶导数
lim(x->0)f(x)/x=0,则:
f(0)=f'(0)=0
则:lim(x->0)f(x)/x^2=lim(x->0)f'(x)/2x=0
问题是:为什么lim(x->0)f'(x)/2x=0 ?
▼优质解答
答案和解析
lim(x->0)f'(x)/2x
=(1/2)lim(x->0) [f'(x)-f'(0)]/x
=(1/2)f''(0)
除非题目中有条件,f''(0)=0,否则此处推不出这个极限为0.
=(1/2)lim(x->0) [f'(x)-f'(0)]/x
=(1/2)f''(0)
除非题目中有条件,f''(0)=0,否则此处推不出这个极限为0.
看了 f(x)在点x=o的某一邻域...的网友还看了以下: