早教吧作业答案频道 -->数学-->
椭圆方程x2/4+y2/3=1A(1,3/2)E.F是椭圆上的两个动点如果AE与AF的斜率互为相反数证明EF的斜率为定值椭圆方程x2/4+y2/3=1A(1,3/2)E.F是椭圆上的两个动点如果AE与AF的斜率互为相反数证明EF的斜
题目详情
椭圆方程 x2/4+y2/3=1 A(1,3/2) E.F是椭圆上的两个 动点 如果AE与AF的斜率互为相反数 证明EF的斜率为定值
椭圆方程 x2/4+y2/3=1 A(1,3/2) E.F是椭圆上的两个 动点 如果AE与AF的斜率互为相反数 证明EF的斜率为定值
椭圆方程 x2/4+y2/3=1 A(1,3/2) E.F是椭圆上的两个 动点 如果AE与AF的斜率互为相反数 证明EF的斜率为定值
▼优质解答
答案和解析
椭圆的顶点是(0,±√3)、(±2,0);
标出A(1,3/2),点A在椭圆上,并连接AE、AF
设AE的斜率为k(k≠0),则AF的斜率为-k.(若k=0,则E、F为同一点,不符合题意)
又AE、AF经过A(1,3/2)
∴直线AE的方程为:y-3/2 = k(x-1) ①
直线AF的方程 y-3/2 =-k(x-1) ②
又椭圆方程为 x^2/4+y^2/3 = 1 ,分别联立①、②并化简得:
(4k^2+3)x^2 +(-8k^2+12k)x +(4k^2-12k-3)= 0 ③
(4k^2+3)x^2 -(8k^2+12k)x +(4k^2+12k-3)= 0 ④
∴由③得:(x-1)*[(4k^2+3)x -(4k^2-12k-3)] = 0
∴x = 1 或 x=(4k^2-12k-3)/(4k^2+3)
(1)当x=1时,y=3/2,显然是点A(1,3/2)
(2)当x=(4k^2-12k-3)/(4k^2+3)时,y=(3/2)-(12k^2+6k)/(4k^2+3)
即:点E[(4k^2-12k-3)/(4k^2+3),(3/2)-(12k^2+6k)/(4k^2+3)]
∴由④得:(x-1)*[(4k^2+3)x-(4k^2+12k-3)] = 0
∴x = 1 或 x=(4k^2+12k-3)/(4k^2+3)
1)当x=1时,y=3/2,显然是点A(1,3/2)
2)当x=(4k^2+12k-3)/(4k^2+3)时,y=(3/2)-(12k^2-6k)/(4k^2+3)
即:点F[(4k^2+12k-3)/(4k^2+3),(3/2)-(12k^2-6k)/(4k^2+3)]
∴EF的斜率k = { [(3/2)-(12k^2-6k)/(4k^2+3))]-[(3/2)-(12k^2+6k)/(4k^2+3)]}/{[(4k^2+12k-3)/(4k^2+3)]-[(4k^2-12k-3)/(4k^2+3)]}
=[12k/(4k��+3)]/[24k/(4k��+3)]
又k≠0
∴EF的斜率k=1/2 ,即EF的斜率为定值1/2.
标出A(1,3/2),点A在椭圆上,并连接AE、AF
设AE的斜率为k(k≠0),则AF的斜率为-k.(若k=0,则E、F为同一点,不符合题意)
又AE、AF经过A(1,3/2)
∴直线AE的方程为:y-3/2 = k(x-1) ①
直线AF的方程 y-3/2 =-k(x-1) ②
又椭圆方程为 x^2/4+y^2/3 = 1 ,分别联立①、②并化简得:
(4k^2+3)x^2 +(-8k^2+12k)x +(4k^2-12k-3)= 0 ③
(4k^2+3)x^2 -(8k^2+12k)x +(4k^2+12k-3)= 0 ④
∴由③得:(x-1)*[(4k^2+3)x -(4k^2-12k-3)] = 0
∴x = 1 或 x=(4k^2-12k-3)/(4k^2+3)
(1)当x=1时,y=3/2,显然是点A(1,3/2)
(2)当x=(4k^2-12k-3)/(4k^2+3)时,y=(3/2)-(12k^2+6k)/(4k^2+3)
即:点E[(4k^2-12k-3)/(4k^2+3),(3/2)-(12k^2+6k)/(4k^2+3)]
∴由④得:(x-1)*[(4k^2+3)x-(4k^2+12k-3)] = 0
∴x = 1 或 x=(4k^2+12k-3)/(4k^2+3)
1)当x=1时,y=3/2,显然是点A(1,3/2)
2)当x=(4k^2+12k-3)/(4k^2+3)时,y=(3/2)-(12k^2-6k)/(4k^2+3)
即:点F[(4k^2+12k-3)/(4k^2+3),(3/2)-(12k^2-6k)/(4k^2+3)]
∴EF的斜率k = { [(3/2)-(12k^2-6k)/(4k^2+3))]-[(3/2)-(12k^2+6k)/(4k^2+3)]}/{[(4k^2+12k-3)/(4k^2+3)]-[(4k^2-12k-3)/(4k^2+3)]}
=[12k/(4k��+3)]/[24k/(4k��+3)]
又k≠0
∴EF的斜率k=1/2 ,即EF的斜率为定值1/2.
看了 椭圆方程x2/4+y2/3=...的网友还看了以下: