早教吧作业答案频道 -->数学-->
如图所示,⊙O1和⊙O2外切于A,BC是⊙O1和⊙O2的公切线,B、C是切点,求证:AB⊥AC.
题目详情
如图所示,⊙O1和⊙O2外切于A,BC是⊙O1和⊙O2的公切线,B、C是切点,求证:AB⊥AC.
▼优质解答
答案和解析
证明:过点A作两圆的内公切线交BC于点O,
∵⊙O1和⊙O2外切于A,BC是⊙O1和⊙O2的公切线,
∴OA=OB,OA=OC,
∴OA=
BC,
∴△ABC为直角三角形,
∴∠BAC=90°,
即AB⊥AC.
∵⊙O1和⊙O2外切于A,BC是⊙O1和⊙O2的公切线,
∴OA=OB,OA=OC,
∴OA=
1 |
2 |
∴△ABC为直角三角形,
∴∠BAC=90°,
即AB⊥AC.
看了 如图所示,⊙O1和⊙O2外切...的网友还看了以下:
如图,P为⊙O外一点,PA切⊙O于点A.过点P的任一直线交⊙O于B、C两点,连接AB、AC,连接P 2020-06-13 …
已知,Rt△ABC中,∠C=90°,AC=4,BC=3.以AC上一点O为圆心的⊙O与BC相切于点C 2020-06-15 …
已知:∠MAN=30°,O为边AN上一点,以O为圆心,2为半径作⊙O,交AN于D、E两点,设AD为 2020-06-17 …
如图,AB为O直径.C,D为O上一点,F为CB延长线上一点,且BC=BD,AC=23.(1)如图1 2020-07-13 …
如图,∠O=30°,任意裁剪的直角三角形纸板两条直角边所在直线与∠O的两边分别交于D、E两点.(1 2020-07-14 …
已知AB为⊙O的直径,C为⊙O上一点,D是BC的中点,过D作⊙O的切线交AC于E,DE=4,CE= 2020-07-20 …
如图1,AB是O的直径,F为O外一点,C为O上一点,FC交O于点E,且∠FAE=∠ECA.(1)求 2020-07-27 …
已知AB是半径为6的⊙O的直径,点C是⊙O的半径OA上的动点,PC⊥AB交⊙O于E,交OA于C,P 2020-07-31 …
如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过O作OE∥AB,交BC于E. 2020-11-27 …
如图1,在⊙O中,E是弧AB的中点,C为⊙O上的一动点(C与E在AB异侧),连接EC交AB于点F,E 2020-12-03 …