早教吧 育儿知识 作业答案 考试题库 百科 知识分享

将三项式(x2+x+1)n展开,当n=1,2,3,…时,得到如下所示的展开式,如图所示的广义杨辉三角形:(x2+x+1)0=1(x2+x+1)1=x2+x+1(x2+x+1)2=x4+2x3+3x2+2x+1(x2+x+1)3=x6+3x5+6x4+7x3+6x2+3x+1观察多项式

题目详情
将三项式(x2+x+1)n展开,当n=1,2,3,…时,得到如下所示的展开式,如图所示的广义杨辉三角形:
(x2+x+1)0=1
(x2+x+1)1=x2+x+1
(x2+x+1)2=x4+2x3+3x2+2x+1
(x2+x+1)3=x6+3x5+6x4+7x3+6x2+3x+1
观察多项式系数之间的关系,可以仿照杨辉三角形构造如图所示的广义杨辉三角形,其构造方法:第0行为1,以下各行每个数是它头上与左右两肩上3数(不足3数的,缺少的数计为0)之和,第k行共有2k+1个数.若在(a+x)(x2+x+1)4的展开式中,x6项的系数为46,则实数a的值为___.
作业帮
▼优质解答
答案和解析
∵(x2+x+1)4=x8+4x7+10x6+16x5+19x4+16x3+10x2+4x+1第4行   1 4 10 16 19 16 10 4 1
若在(a+x)(x2+x+1)4的展开式中,x6项的系数为46,即10a+16=46,∴a=3
故答案为:3