早教吧 育儿知识 作业答案 考试题库 百科 知识分享

因式分解.1,(x^4-4x^2+1)(x^4+3x^2+1)+10x^42,已知a,b满足a^3+b^3+3ab=1,则a+b=?3,2x^3+x^2-13x+6的因式是?4,m是不能表示为三个互不相等的合数之和的最大整数.m为?5,a,b为整数,且x^2-x-1是ax^3+bx^2+1的因式,那么b

题目详情
因式分解.
1,(x^4 -4x^2 +1)(x^4 +3x^2 +1)+10x^4
2,已知a,b满足a^3+b^3+3ab=1,则a+b=?
3,2x^3+x^2-13x+6的因式是?
4,m是不能表示为三个互不相等的合数之和的最大整数.m为?
5,a,b为整数,且x^2-x-1是ax^3+bx^2+1的因式,那么b的值为?
▼优质解答
答案和解析
第一题:
全部展开得
x^8-x^6-x^2+1
=x^6(x^2-1)-(x^2-1)
=(x^2-1)(x^6-1)
=(x+1)(x-1)(x^3+1)(x^3-1)
=(x+1)^2(x-1)^2(x^2+x+1)(x^2-x+1)
第二题:
a^3+b^3+3ab=1得
(a+b)(a^2-ab+b^2)+3ab-1=0
(a+b){(a+b)^2-3ab}+3ab-1=0
(a+b)^3-1-3ab(a+b)+3ab=0
(a+b-1){(a+b)^2+a+b+1}-3ab(a+b-1)=0
(a+b-1){(a+b)^2+a+b+1-3ab}=0
(a+b-1)(a^2+b^2+2ab+a+b+1-3ab)=0
(a+b-1)(a^2+b^2-ab+a+b+1)=0
左右两边同乘2,得
(a+b-1)(2a^2+2b^2-2ab+2a+2b+2)=0
(a+b-1)((a-b)^2+(a+1)^2+(b+1)^2)=0
故a+b-1=0或(a-b)^2+(a+1)^2+(b+1)^2=0
由a+b-1=0得a+b=1
由(a-b)^2+(a+1)^2+(b+1)^2=0得
a-b=0,a+1=0,b+1=0,a=b=-1,此时a+b=-2
第三题:
2x^3+x^2-13x+6
=2x^3+2x^2-13x+6-x^2
=2x^3+(2x^2-13x+6)-x^2
=2x^3-x^2+(2x-1)(x-6)
=x^2(2x-1)+(2x-1)(x-6)
=(2x-1)(x^2+x-6)
=(2x-1)(x+3)(x-2)
第四题:
先慢慢尝试,猜测m=17
18=4+6+8
19=4+6+9
接下来证明m不可能大于18
当m>18时
若m=2k(m是偶数)
k>9
m=4+6+2(k-5)
并且2(k-5)不可能等于4 或 6
另外
若m=2k-1(m是奇数)
k>10
m=4+9+2(k-7)
并且2(k-7)不可能等于 4 或 9
也就是说大于等于18的数一定能拆成三个不同合数的和
综上所述,m=17
第五题:
设ax^3+bx^2+1=(x^2-x-1)*(cx+d)
整理得,ax^3+bx^2+1=cx^3+(d-c)x^2-(c+d)x-d
比较系数
a=c
b=d-c
0=c+d
1=-d
解得
a=1
b=-2
c=1
d=-1
因式分解的十二种方法
把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.因式分解的方法多种多样,现总结如下:
1、 提公因法
如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.
例1、 分解因式x -2x -x(2003淮安市中考题)
x -2x -x=x(x -2x-1)
2、 应用公式法
由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式.
例2、分解因式a +4ab+4b (2003南通市中考题)
a +4ab+4b =(a+2b)
3、 分组分解法
要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)
例3、分解因式m +5n-mn-5m
m +5n-mn-5m= m -5m -mn+5n
= (m -5m )+(-mn+5n)
=m(m-5)-n(m-5)
=(m-5)(m-n)
4、 十字相乘法
对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)
例4、分解因式7x -19x-6
分析: 1 -3
7 2
2-21=-19
7x -19x-6=(7x+2)(x-3)
5、配方法
对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解.
例5、分解因式x +3x-40
解x +3x-40=x +3x+( ) -( ) -40
=(x+ ) -( )
=(x+ + )(x+ - )
=(x+8)(x-5)
6、拆、添项法
可以把多项式拆成若干部分,再用进行因式分解.
例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)
bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)
=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)
=c(c-a)(b+a)+b(a+b)(c-a)
=(c+b)(c-a)(a+b)
7、 换元法
有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来.
例7、分解因式2x -x -6x -x+2
2x -x -6x -x+2=2(x +1)-x(x +1)-6x
=x [2(x + )-(x+ )-6
令y=x+ , x [2(x + )-(x+ )-6
= x [2(y -2)-y-6]
= x (2y -y-10)
=x (y+2)(2y-5)
=x (x+ +2)(2x+ -5)
= (x +2x+1) (2x -5x+2)
=(x+1) (2x-1)(x-2)
8、 求根法
令多项式f(x)=0,求出其根为x ,x ,x ,……x ,则多项式可因式分解为f(x)=(x-x )(x-x )(x-x )……(x-x )
例8、分解因式2x +7x -2x -13x+6
令f(x)=2x +7x -2x -13x+6=0
通过综合除法可知,f(x)=0根为 ,-3,-2,1
则2x +7x -2x -13x+6=(2x-1)(x+3)(x+2)(x-1)
9、 图象法
令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x ,x ,x ,……x ,则多项式可因式分解为f(x)= f(x)=(x-x )(x-x )(x-x )……(x-x )
例9、因式分解x +2x -5x-6
令y= x +2x -5x-6
作出其图象,见右图,与x轴交点为-3,-1,2
则x +2x -5x-6=(x+1)(x+3)(x-2)
10、 主元法
先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解.
例10、分解因式a (b-c)+b (c-a)+c (a-b)
分析:此题可选定a为主元,将其按次数从高到低排列
a (b-c)+b (c-a)+c (a-b)=a (b-c)-a(b -c )+(b c-c b)
=(b-c) [a -a(b+c)+bc]
=(b-c)(a-b)(a-c)
11、 利用特殊值法
将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式.
例11、分解因式x +9x +23x+15
令x=2,则x +9x +23x+15=8+36+46+15=105
将105分解成3个质因数的积,即105=3×5×7
注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值
则x +9x +23x+15=(x+1)(x+3)(x+5)
12、待定系数法
首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解.
例12、分解因式x -x -5x -6x-4
分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式.
设x -x -5x -6x-4=(x +ax+b)(x +cx+d)
= x +(a+c)x +(ac+b+d)x +(ad+bc)x+bd
所以 解得
则x -x -5x -6x-4 =(x +x+1)(x -2x-4)
看了 因式分解.1,(x^4-4x...的网友还看了以下: