早教吧 育儿知识 作业答案 考试题库 百科 知识分享

ln,log,对数符号又是什么?还有指数式是什么?

题目详情
ln,log,对数符号又是什么?还有指数式是什么?
▼优质解答
答案和解析
log(a)(n)函数叫做对数函数.对数函数中x的定义域是x>0,零和负数没有对数;a的定义域是a>0且a≠1. 对数是中学初等数学中的重要内容,那么当初是谁首创“对数”这种高级运算的呢?在数学史上,一般认为对数的发明者是十六世纪末到十七世纪初的苏格兰数学家——纳皮尔(Napier,1550-1617年)男爵.在纳皮尔所处的年代,哥白尼的“太阳中心说”刚刚开始流行,这导致天文学成为当时的热门学科.可是由于当时常量数学的局限性,天文学家们不得不花费很大的精力去计算那些繁杂的“天文数字”,因此浪费了若干年甚至毕生的宝贵时间.纳皮尔也是当时的一位天文爱好者,为了简化计算,他多年潜心研究大数字的计算技术,终于独立发明了对数.当然,纳皮尔所发明的对数,在形式上与现代数学中的对数理论并不完全一样.在纳皮尔那个时代,“指数”这个概念还尚未形成,因此纳皮尔并不是像现行代数课本中那样,通过指数来引出对数,而是通过研究直线运动得出对数概念的.那么,当时纳皮尔所发明的对数运算,是怎么一回事呢?在那个时代,计算多位数之间的乘积,还是十分复杂的运算,因此纳皮尔首先发明了一种计算特殊多位数之间乘积的方法.让我们来看看下面这个例子:
  n 0、1、2、3、 4、 5、 6、 7 、 8 、 9 、 10 、 11 、 12 、 13 、 14 、……
  2^n 1、2、4、8、16、32、64、128、256、512、1024、2048、4096、8192、16384、……
  这两行数字之间的关系是极为明确的:第一行表示2的指数,第二行表示2的对应幂.如果我们要计算第二行中两个数的乘积,可以通过第一行对应数字的加和来实现.比如,计算64×256的值,就可以先查询第一行的对应数字:64对应6,256对应8;然后再把第一行中的对应数字加和起来:6+8=14;第一行中的14,对应第二行中的16384,所以有:64×256=16384.纳皮尔的这种计算方法,实际上已经完全是现代数学中“对数运算”的思想了.回忆一下,我们在中学学习“运用对数简化计算”的时候,采用的不正是这种思路吗:计算两个复杂数的乘积,先查《常用对数表》,找到这两个复杂数的常用对数,再把这两个常用对数值相加,再通过《常用对数的反对数表》查出加和值的反对数值,就是原先那两个复杂数的乘积了.这种“化乘除为加减”,从而达到简化计算的思路,不正是对数运算的明显特征吗?经过多年的探索,纳皮尔男爵于1614年出版了他的名著《奇妙的对数定律说明书》,向世人公布了他的这项发明,并且解释了这项发明的特点.所以,纳皮尔是当之无愧的“对数缔造者”,理应在数学史上享有这份殊荣.伟大的导师恩格斯在他的著作《自然辩证法》中,曾经把笛卡尔的坐标、纳皮尔的对数、牛顿和莱布尼兹的微积分共同称为十七世纪的三大数学发明.法国著名的数学家、天文学家拉普拉斯(PierreSimonLaplace,1749-1827)曾说对数可以缩短计算时间,“在实效上等于把天文学家的寿命延长了许多倍”.
 定义:
  若a^n=b(a>0且a≠1)
  则n=log(a)(b)
  基本性质:
  1、a^(log(a)(b))=b
  2、log(a)(MN)=log(a)(M)+log(a)(N);
  3、log(a)(M÷N)=log(a)(M)-log(a)(N);
  4、log(a)(M^n)=nlog(a)(M)
  推导
  1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b.
  2、MN=M×N
  由基本性质1(换掉M和N)
  a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)]
  由指数的性质
  a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}
  又因为指数函数是单调函数,所以
  log(a)(MN) = log(a)(M) + log(a)(N)
  3、与(2)类似处理
  MN=M÷N
  由基本性质1(换掉M和N)
  a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)]
  由指数的性质
  a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]}
  又因为指数函数是单调函数,所以
  log(a)(M÷N) = log(a)(M) - log(a)(N)
  4、与(2)类似处理
  M^n=M^n
  由基本性质1(换掉M)
  a^[log(a)(M^n)] = {a^[log(a)(M)]}^n
  由指数的性质
  a^[log(a)(M^n)] = a^{[log(a)(M)]*n}
  又因为指数函数是单调函数,所以
  log(a)(M^n)=nlog(a)(M)
  基本性质4推广
  log(a^n)(b^m)=m/n*[log(a)(b)]
  推导如下:
  由换底公式(换底公式见下面)[lnx是log(e)(x)e称作自然对数的底] log(a^n)(b^m)=ln(a^n)÷ln(b^n)
  由基本性质4可得
  log(a^n)(b^m) = [n×ln(a)]÷[m×ln(b)] = (m÷n)×{[ln(a)]÷[ln(b)]}
  再由换底公式
  log(a^n)(b^m)=m÷n×[log(a)(b)] --------------------------------------------(性质及推导 完)在实用上,常采用以10为底的对数,并将对数记号简写为lgb,称为常用对数,它适用于求十进伯制整数或小数的对数.例如lg10=1,lg100=lg102=2,lg4000=lg(103×4)=3+lg4,可见只要对某一范围的数编制出对数表,便可利用来计算其他十进制数的对数的近似值.在数学理论上一般都用以无理数e=2.7182818……为底的对数,并将记号 loge.简写为ln,称为自然对数,因为自然对数函数的导数表达式特别简洁,所以显出了它比其他对数在理论上的优越性.历史上,数学工作者们编制了多种不同精确度的常用对数表和自然对数表.但随着电子技术的发展,这些数表已逐渐被现代的电子计算工具所取代
看了 ln,log,对数符号又是什...的网友还看了以下:

用你的右手数自己的左手指头,数的方法是:大拇指数1,食指数2,中指数3,无名指数4,小指数5,接着  2020-06-19 …

某小朋友按如右图所示的规则练习数数,1大拇指,2食指,3中指,4无名指,5小指,6无名指,,一直数  2020-07-03 …

在小时候,我们用手指练习数数.一个小朋友按如下规则练习数数,规则如下:从大拇指开始数1,到小指数5  2020-07-03 …

按图中谁规定的顺序数手指头,当数到2000时,正好数到哪个手指上数到1是大拇指,数到2是食指,数到  2020-07-03 …

幂指对函数的题目,已知f(x)是幂函数,g(x)是指数函数,F(x)=f(x)+g(x)……已知f  2020-08-01 …

某小朋友按如图所示的规则练习数数,1大拇指,2食指,3中指,4无名指,5小指,6无名指,…,一直数到  2020-12-03 …

如图,一个小朋友按如图所示的规则练习数数,1大拇指,2食指,3中指,4无名指,5小指,6无名指,…,  2020-12-03 …

如右上图,一个小朋友按如图所示的规则练习数数,1大拇指,2食指,3中指,4无名指,5小指,6无名指,  2021-01-17 …

某小朋友按如图所示的规则练习数数,1大拇指,2食指,3中指,4无名指,5小指,6无名指,…,一直数到  2021-01-17 …

如图,一个小朋友按如图所示的规则练习数数,1大拇指,2食指,3中指,4无名指,5小指,6无名指,…,  2021-01-17 …