早教吧作业答案频道 -->数学-->
2007•福州)如图所示,二次函数y=ax2+bx+c(a≠0)的图象经过点(-1,2),且与x轴交点的横坐标分别为x1,x2,其中-2<x1<-1,0<x2<1,下列结论:①4a-2b+c<0;②2a-b<0;③a<-1;④b2+8a>4ac.其中
题目详情
2007•福州)如图所示,二次函数y=ax2+bx+c(a≠0)的图象经过点(-1,2),且与x轴交点的横坐标分别为x1,x2,其中-2<x1<-1,0<x2<1,下列结论:①4a-2b+c<0;②2a-b<0;③a<-1;④b2+8a>4ac.其中正确的有()
▼优质解答
答案和解析
由图知:抛物线的开口向下,则a<0;抛物线的对称轴x=-b2a>-1,且c>0;
①由图可得:当x=-2时,y<0,即4a-2b+c<0,故①正确;
②已知x=-b2a>-1,且a<0,所以2a-b<0,故②正确;
③已知抛物线经过(-1,2),即a-b+c=2(1),由图知:当x=1时,y<0,即a+b+c<0(2),
由①知:4a-2b+c<0(3);联立(1)(2),得:a+c<1;联立(1)(3)得:2a-c<-4;
故3a<-3,即a<-1;所以③正确;
④由于抛物线的对称轴大于-1,所以抛物线的顶点纵坐标应该大于2,即:
4ac-b24a>2,由于a<0,所以4ac-b2<8a,即b2+8a>4ac,故④正确;
因此正确的结论是①②③④.
故答案为:①②③④.
①由图可得:当x=-2时,y<0,即4a-2b+c<0,故①正确;
②已知x=-b2a>-1,且a<0,所以2a-b<0,故②正确;
③已知抛物线经过(-1,2),即a-b+c=2(1),由图知:当x=1时,y<0,即a+b+c<0(2),
由①知:4a-2b+c<0(3);联立(1)(2),得:a+c<1;联立(1)(3)得:2a-c<-4;
故3a<-3,即a<-1;所以③正确;
④由于抛物线的对称轴大于-1,所以抛物线的顶点纵坐标应该大于2,即:
4ac-b24a>2,由于a<0,所以4ac-b2<8a,即b2+8a>4ac,故④正确;
因此正确的结论是①②③④.
故答案为:①②③④.
看了 2007•福州)如图所示,二...的网友还看了以下:
一道关于双曲线C的问题已知双曲线C的中心在原点,对称轴为坐标轴,其一条渐近线方程是x+y=0,且双 2020-05-15 …
)已知二次函数Y=ax2+bx+c的图像与X轴交于(x1,0),(x2,0)两点,且0<x1<1, 2020-05-16 …
有一个高为1.1米的正方体水池刚好能装满28桶水,已知水桶是一个圆柱体,...有一个高为1.1米的 2020-05-20 …
一、我们知道1/1×2=1/1-1/2=1/2,1/2×3=1/2-1/3=1/6验证:1/3×4 2020-07-17 …
苦求初中裂项求和法一共两道题:1.1(1/10)+3(1/40)+5(1/88)+7(1/154) 2020-07-19 …
直角三角形1:1:根号2请问各路高手:直角三角形三个角分别为30°60°90°我想问的是:1:1: 2020-07-22 …
寻找规律解数学题1/1*2=1-1/22/2*3=1/2-1/31/3*4=1/3-1/4……计算 2020-07-22 …
由下列各式:1>1/2,1+1/2+1/3>1有下列各式:1>1/2;1+1/2+1/3>1;1+1 2020-10-30 …
计算一道数学题,(1+1/2)×(1+1/3)×(1+1/4)×(1+1/5)×(1+1/6)×(1 2020-11-30 …
1、已知二次函数y=ax²+bx+c的图象与x轴交于点(-2,0)、(x1,0),且1<x1<2,与 2020-12-27 …