早教吧 育儿知识 作业答案 考试题库 百科 知识分享

求函数f(x)=2x3+3x2-12x+14的在[-3,4]上的最大值与最小值.

题目详情
求函数f(x)=2x3+3x2-12x+14的在[-3,4]上的最大值与最小值.
▼优质解答
答案和解析
由题可得f′(x)=6x2+6x-12=0,
令f′(x)=0,解得x=1,-2,
∴函数在(-3,-2),(1,4)上单调递增,在(-2,1)上单调递减,
又f(-3)=20,f(-2)=34,f(1)=7,f(4)=142,
∴函数f(x)=2x3+3x2-12x+14的在[-3,4]上的最大值为142,最小值7.