早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2014•松江区二模)如图,在直角坐标平面内,直线y=-x+5与x轴和y轴分别交于A、B两点,二次函数y=x2+bx+c的图象经过点A、B,且顶点为C.(1)求这个二次函数的解析式;(2)求sin∠OCA的值;

题目详情
(2014•松江区二模)如图,在直角坐标平面内,直线y=-x+5与x轴和y轴分别交于A、B两点,二次函数y=x2+bx+c的图象经过点A、B,且顶点为C.
(1)求这个二次函数的解析式;
(2)求sin∠OCA的值;
(3)若P是这个二次函数图象上位于x轴下方的一点,且△ABP的面积为10,求点P的坐标.
▼优质解答
答案和解析
(1)由直线y=-x+5得点B(0,5),A(5,0),
将A、B两点的坐标代入y=x2+bx+c,得
 
c=5
25+5b+c=0

解得
b=−6
c=5

∴抛物线的解析式为y=x2-6x+5;

(2)如图,过点C作CH⊥x轴交x轴于点H.
由(1)知,抛物线的解析式为:y=x2-6x+5,则配方 得y=(x-3)2-4,
∴点C(3,-4),
∴CH=4,AH=2,AC=2
5

∴OC=5.
∵OA=5,
∴OA=OC,
∴∠OAC=∠OCA,
∴sin∠OCA=sin∠OAC=
CH
AC
4
2
5
2
5
5


(3)如图,过P点作PQ⊥x轴并延长交直线y=-x+5于Q.
设点P(m,m2-6m+5),Q(m,-m+5),则PQ=-m+5-(m2-6m+5)=-m2+5m.
∵S△ABP=S△PQB+S△PQA=
1
2
PQ•OA,