早教吧作业答案频道 -->数学-->
已知函数f(x)=(2-a)lnx-2ax-1/x(1)试讨论f(x)的单调性(2)如果当x>1时,f(x)<-2a-1,求a范围
题目详情
已知函数f(x)=(2-a)lnx-2ax-1/x (1)试讨论f(x)的单调性 (2)如果当x>1时,f(x)<-2a-1,求a范围
▼优质解答
答案和解析
(1)f'(x)=(2-a)/x-2a+1/x²
=[1-(a-2)x-2ax²]/x²
=(1+2x)(1-ax)/x²
令f'(x)=0,解得x1=-1/2,x2=1/a
由题,显然x∈(0,﹢∞),故
①a=0时,f'(x)=(1+2x)/x²>0.,则f(x)单调递增
②a<0时,f'(x)>0对任意x∈﹙0,﹢∞﹚均成立,则f(x)单调递增
③a>0时,列表如下
x (0,1/a) 1/a (1/a,﹢∞)
f'(x) + 0 -
f(x) ↗ 极大值 ↘
则f(x)在(0,1/a)上单调递增,在(1/a,﹢∞)上单调递减
综上,a≤0,f(x)在﹙0,﹢∞﹚上单调递增
a>0,f(x)在(0,1/a)上单调递增,在(1/a,﹢∞)上单调递减
(2)f(x)<﹣2a-1=f(1)
由(1)知,当a≤0时,x>1,f(x)单调递增
故f(x)>f(1) 矛盾
所以a>0
因为f(1)>f(x),可知(1,x)在f(x)递减区间,
故1/a≦1
=[1-(a-2)x-2ax²]/x²
=(1+2x)(1-ax)/x²
令f'(x)=0,解得x1=-1/2,x2=1/a
由题,显然x∈(0,﹢∞),故
①a=0时,f'(x)=(1+2x)/x²>0.,则f(x)单调递增
②a<0时,f'(x)>0对任意x∈﹙0,﹢∞﹚均成立,则f(x)单调递增
③a>0时,列表如下
x (0,1/a) 1/a (1/a,﹢∞)
f'(x) + 0 -
f(x) ↗ 极大值 ↘
则f(x)在(0,1/a)上单调递增,在(1/a,﹢∞)上单调递减
综上,a≤0,f(x)在﹙0,﹢∞﹚上单调递增
a>0,f(x)在(0,1/a)上单调递增,在(1/a,﹢∞)上单调递减
(2)f(x)<﹣2a-1=f(1)
由(1)知,当a≤0时,x>1,f(x)单调递增
故f(x)>f(1) 矛盾
所以a>0
因为f(1)>f(x),可知(1,x)在f(x)递减区间,
故1/a≦1
看了 已知函数f(x)=(2-a)...的网友还看了以下:
已知函数f(x)=1/2(2^x+2^-x),求f(x)的定义域,值域,并确定函数的奇偶性,单调性 2020-04-05 …
1.若64^2×8^3=2^x,求x的值.2.已知x^3n=2,求x^6n+x^4n·x^5n的值 2020-04-26 …
求这高中函数题答案题1:设a,b属于R,且a>0,函数f(x)=x^2+ax+2b,g(x)=ax 2020-05-23 …
有关极限和三角函数,要求列出每一个步骤1.设f(x)=sin3x/x,x不等于0,=a,x=0在x 2020-06-02 …
设函数y=f(x)对任意X∈R,都有f(x+1)=af(x)(a>0)1.若函数y=f(x)的图像 2020-07-26 …
1、已知n是大于一的正整数,求证n的4次方+4是合数.2、求不大于200的恰好有15个正约数的所有 2020-07-31 …
数学导数问题y=sin(兀/2+x)求导通过奇变偶不变这个是cosx再求导的结果与用复合函数学导数问 2020-11-20 …
1、已知函数f(x)=(2^x-2^-x)/(2^x+2^-x),求函数值域2、已知二次函数f(x) 2020-11-27 …
函数的解析式设函数y=f(x)对任意x属于R,都有f(x+1)=af(x)(x>0).若当x属于(0 2020-12-05 …
已知f(x)是二次函数且满足f(0)=1f(x+1)=f(x)-2x+2求f(x)解析式已知f(x) 2020-12-08 …