早教吧作业答案频道 -->数学-->
已知函数f(x)=-x2+2|x-a|.(Ⅰ)若函数y=f(x)为偶函数,求a的值;(Ⅱ)若a=12,求函数y=f(x)的单调递增区间;(Ⅲ)当a>0时,若对任意的x∈[0,+∞),不等式f(x-1)≥2f(x)恒成
题目详情
已知函数f(x)=-x2+2|x-a|.
(Ⅰ)若函数y=f(x)为偶函数,求a的值;
(Ⅱ)若a=
,求函数y=f(x)的单调递增区间;
(Ⅲ)当a>0时,若对任意的x∈[0,+∞),不等式f(x-1)≥2f(x)恒成立,求实数a的取值范围.
(Ⅰ)若函数y=f(x)为偶函数,求a的值;
(Ⅱ)若a=
1 |
2 |
(Ⅲ)当a>0时,若对任意的x∈[0,+∞),不等式f(x-1)≥2f(x)恒成立,求实数a的取值范围.
▼优质解答
答案和解析
(Ⅰ)解法一:因为函数f(x)=-x2+2|x-a|
又函数y=f(x)为偶函数,
所以任取x∈R,则f(-x)=f(x)恒成立,
即-(-x)2+2|-x-a|=-x2+2|x-a|恒成立.…(3分)
所以|x-a|=|x+a|恒成立,
两边平方得:x2-2ax+a2=x2+2ax+a2
所以4ax=0,因为x为任意实数,所以a=0…(5分)
解法二(特殊值法):因为函数y=f(x)为偶函数,
所以f(-1)=f(1),得|1-a|=|1+a|,得:a=0
所以f(x)=-x2+2|x|,
故有f(-x)=f(x),即f(x)为偶函数…(5分)
(Ⅱ)若a=
,则f(x)=−x2+2|x−
|=
.…(8分)
由函数的图象并结合抛物线的对称轴可知,函数的单调递增区间为(-∞,-1]和[
,1]…(10分)
(Ⅲ)不等式f(x-1)≥2f(x)化为-(x-1)2+2|x-1-a|≥-2x2+4|x-a|,
即:4|x-a|-2|x-(1+a)|≤x2+2x-1(*)
对任意的x∈[0,+∞)恒成立.
因为a>0.所以分如下情况讨论:
①0≤x≤a时,不等式(*)化为-4(x-a)+2[x-(1+a)]≤x2+2x-1,
即x2+4x+1-2a≥0对任意的x∈[0,a]恒成立,
因为函数g(x)=x2+4x+1-2a在区间[0,a]上单调递增,
则g(0)最小,所以只需g(0)≥0即可,得a≤
,
又a>0所以0<a≤
…(12分)
②a<x≤1+a时,不等式(*)化为4(x-a)+2[x-(1+a)]≤x2+2x-1,
即x2-4x+1+6a≥0对任意的x∈(a,1+a]恒成立,
由①,0<a≤
,知:函数h(x)=x2-4x+1+6a在区间(a,1+a]上单调递减,
则只需h(1+a)≥0即可,即a2+4a-2≥0,得a≤−2−
或a≥
−2.
因为
又函数y=f(x)为偶函数,
所以任取x∈R,则f(-x)=f(x)恒成立,
即-(-x)2+2|-x-a|=-x2+2|x-a|恒成立.…(3分)
所以|x-a|=|x+a|恒成立,
两边平方得:x2-2ax+a2=x2+2ax+a2
所以4ax=0,因为x为任意实数,所以a=0…(5分)
解法二(特殊值法):因为函数y=f(x)为偶函数,
所以f(-1)=f(1),得|1-a|=|1+a|,得:a=0
所以f(x)=-x2+2|x|,
故有f(-x)=f(x),即f(x)为偶函数…(5分)
(Ⅱ)若a=
1 |
2 |
1 |
2 |
|
由函数的图象并结合抛物线的对称轴可知,函数的单调递增区间为(-∞,-1]和[
1 |
2 |
(Ⅲ)不等式f(x-1)≥2f(x)化为-(x-1)2+2|x-1-a|≥-2x2+4|x-a|,
即:4|x-a|-2|x-(1+a)|≤x2+2x-1(*)
对任意的x∈[0,+∞)恒成立.
因为a>0.所以分如下情况讨论:
①0≤x≤a时,不等式(*)化为-4(x-a)+2[x-(1+a)]≤x2+2x-1,
即x2+4x+1-2a≥0对任意的x∈[0,a]恒成立,
因为函数g(x)=x2+4x+1-2a在区间[0,a]上单调递增,
则g(0)最小,所以只需g(0)≥0即可,得a≤
1 |
2 |
又a>0所以0<a≤
1 |
2 |
②a<x≤1+a时,不等式(*)化为4(x-a)+2[x-(1+a)]≤x2+2x-1,
即x2-4x+1+6a≥0对任意的x∈(a,1+a]恒成立,
由①,0<a≤
1 |
2 |
则只需h(1+a)≥0即可,即a2+4a-2≥0,得a≤−2−
6 |
6 |
因为
作业帮用户
2017-10-06
|
看了 已知函数f(x)=-x2+2...的网友还看了以下:
已知f(x)是2次函数.若f(0)=0.f(x+1)=f(x)+x+1,求f(x)..已知…已知f 2020-04-27 …
1.已知函数f(x)=|x+1|+ax(a∈R),若函数f(x)在R上具有单调性,求a的取值范围. 2020-05-13 …
若函数y=-x^2+2x+1在区间〔a,4〕上是单调减函数,则a的取值范围是?若函数y=-x^2+ 2020-05-20 …
2道高一的复合函数题目1.已知f(x)是二次函数,且f(0)=0,f(x+1)=f(x)+x+1, 2020-05-22 …
已知(fx)是二次函数,若f(0)=0,且f(x+1)=f(x)+x+1.(1)求函数的解析式已知 2020-07-21 …
已知函数f(x)=a-[1/(2的x次方)-1],(a属于R)1.若f(x)为奇函数,求a的值;2 2020-07-27 …
关于两道奇偶函数题1、已知f(x)是偶函数,当x大于等于0时,f(x)=x^2-2x+1,求当x小 2020-07-30 …
已经知道,设f是[a.b]上的可积函数,若f(x)>=0,x∈[a,b],则定积分∫a^bf(x)d 2020-11-01 …
1.已知f(x)是偶函数,它在[0,+无穷大)上是减函数,若f(lgx)大于f(1)则x的取值范围是 2020-12-08 …
二次函数..已知f(x)是二次函数若f(x)=0,且f(x)+x+1=f(x+1),试求f(x)的表 2020-12-08 …